Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387116389> ?p ?o ?g. }
- W4387116389 endingPage "112055" @default.
- W4387116389 startingPage "112055" @default.
- W4387116389 abstract "Perovskite-based solar cells have captivated researchers, due to their outstanding photovoltaic (PV) performance. All inorganic halide perovskite solar cells (AIHP-SC) exhibited excellent stability against environmental conditions with improved lifetime. In this investigation, low lead CsPb0.625Zn0.375I2Cl based AIHP-SC is designed with the utilization of a SCAPS-1D simulator. Further, the impact of ETL/HTL parameters viz. mobility and doping on the PV performance is analyzed. Thereafter, machine learning (ML) models are trained, tested, and verified using artificial intelligence (AI) algorithms. Utilization of ML models shortens experiment time and eliminates the requirement for extensive resources in designing and predicting the PV performance of solar cells. In this research, the PV performance of AIHP-SC layered as TiO2/ CsPb0.625Zn0.375I2Cl/ Spiro-MeOTAD at different ETL/HTL mobility (ranging from 0.004 cm2/Vs to 4 cm2/Vs) and doping density (ranging from 1015 cm−3 to 1019 cm−3) has been evaluated. The influence of these variations leads to the generating 2500 PV performance datasets including current density (JSC), fill factor (FF), open circuit voltage (VOC), and power conversion efficiency (PCE). These generated data set attributes are fed to train the ML models viz. linear regression (LR), random forest (RF), support vector regression (SVR), eXtreme gradient boosting (xGB), and artificial neural network (ANN). For validation, the performance of ML models is verified against SCAPS-1D generated performance results by using mean square error (MSE) and R square (R2) as the performance metrics. Execution of ML algorithms revealed that performance of RF and xGB exhibits high correlation with SCAPS-1D generated data set as the prediction made by these two algorithms are best matched to actual outcome. Additionally, Shapley additive explanations (SHAP) analysis is performed to examine the influence of input variables (also known as independent variables) on target performance parameters (VOC, JSC, FF and PCE). A significant rise in PCE is observed from 9.5 % to 21.90 % while optimizing ETL/HTL mobility and doping density of AIHP-SC. The investigated results provide supervision to researchers in the design of highly stable AIHP-SC, further integration of ML in AIHP-SC is time time-efficient approach to design and performance prediction." @default.
- W4387116389 created "2023-09-29" @default.
- W4387116389 creator A5003667206 @default.
- W4387116389 creator A5027081227 @default.
- W4387116389 creator A5063825312 @default.
- W4387116389 creator A5087854669 @default.
- W4387116389 date "2023-11-01" @default.
- W4387116389 modified "2023-10-17" @default.
- W4387116389 title "Machine learning-aided optimization for transport layer parameters of low lead inorganic Zn-based mixed-halide perovskite solar cell" @default.
- W4387116389 cites W1946383872 @default.
- W4387116389 cites W2006736200 @default.
- W4387116389 cites W2031186092 @default.
- W4387116389 cites W2041726686 @default.
- W4387116389 cites W2057327293 @default.
- W4387116389 cites W2064116501 @default.
- W4387116389 cites W2081640113 @default.
- W4387116389 cites W2200830888 @default.
- W4387116389 cites W2340902199 @default.
- W4387116389 cites W2403767637 @default.
- W4387116389 cites W2517092238 @default.
- W4387116389 cites W2545672051 @default.
- W4387116389 cites W2549721664 @default.
- W4387116389 cites W2554212518 @default.
- W4387116389 cites W2556342416 @default.
- W4387116389 cites W2625361059 @default.
- W4387116389 cites W2730983524 @default.
- W4387116389 cites W2734305357 @default.
- W4387116389 cites W2757507462 @default.
- W4387116389 cites W2759839783 @default.
- W4387116389 cites W2768897475 @default.
- W4387116389 cites W2794357799 @default.
- W4387116389 cites W2804286460 @default.
- W4387116389 cites W2804440548 @default.
- W4387116389 cites W2804959180 @default.
- W4387116389 cites W2887004050 @default.
- W4387116389 cites W2899964261 @default.
- W4387116389 cites W2901473437 @default.
- W4387116389 cites W2914262061 @default.
- W4387116389 cites W2921969430 @default.
- W4387116389 cites W2927780933 @default.
- W4387116389 cites W2942546239 @default.
- W4387116389 cites W2956242061 @default.
- W4387116389 cites W2957025038 @default.
- W4387116389 cites W2981093319 @default.
- W4387116389 cites W3014890483 @default.
- W4387116389 cites W3038752980 @default.
- W4387116389 cites W3044853528 @default.
- W4387116389 cites W3048347406 @default.
- W4387116389 cites W3057179012 @default.
- W4387116389 cites W3090163993 @default.
- W4387116389 cites W3093256012 @default.
- W4387116389 cites W3093456805 @default.
- W4387116389 cites W3095650796 @default.
- W4387116389 cites W3099753925 @default.
- W4387116389 cites W3118299338 @default.
- W4387116389 cites W3128431666 @default.
- W4387116389 cites W3132079051 @default.
- W4387116389 cites W3133224316 @default.
- W4387116389 cites W3147596910 @default.
- W4387116389 cites W3154511245 @default.
- W4387116389 cites W3159241048 @default.
- W4387116389 cites W3166025436 @default.
- W4387116389 cites W3179560197 @default.
- W4387116389 cites W3216305915 @default.
- W4387116389 cites W4213338680 @default.
- W4387116389 cites W4225496250 @default.
- W4387116389 cites W4282006100 @default.
- W4387116389 cites W4283264067 @default.
- W4387116389 cites W4283327161 @default.
- W4387116389 cites W4285507466 @default.
- W4387116389 cites W4313839284 @default.
- W4387116389 cites W4317549160 @default.
- W4387116389 cites W4362665656 @default.
- W4387116389 cites W4366090882 @default.
- W4387116389 doi "https://doi.org/10.1016/j.solener.2023.112055" @default.
- W4387116389 hasPublicationYear "2023" @default.
- W4387116389 type Work @default.
- W4387116389 citedByCount "0" @default.
- W4387116389 crossrefType "journal-article" @default.
- W4387116389 hasAuthorship W4387116389A5003667206 @default.
- W4387116389 hasAuthorship W4387116389A5027081227 @default.
- W4387116389 hasAuthorship W4387116389A5063825312 @default.
- W4387116389 hasAuthorship W4387116389A5087854669 @default.
- W4387116389 hasConcept C105795698 @default.
- W4387116389 hasConcept C11413529 @default.
- W4387116389 hasConcept C119599485 @default.
- W4387116389 hasConcept C119857082 @default.
- W4387116389 hasConcept C12267149 @default.
- W4387116389 hasConcept C127413603 @default.
- W4387116389 hasConcept C139945424 @default.
- W4387116389 hasConcept C154945302 @default.
- W4387116389 hasConcept C155011858 @default.
- W4387116389 hasConcept C165801399 @default.
- W4387116389 hasConcept C192562407 @default.
- W4387116389 hasConcept C206991015 @default.
- W4387116389 hasConcept C33923547 @default.
- W4387116389 hasConcept C41008148 @default.
- W4387116389 hasConcept C41291067 @default.