Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387120719> ?p ?o ?g. }
- W4387120719 endingPage "3395" @default.
- W4387120719 startingPage "3395" @default.
- W4387120719 abstract "Surface water flood risk is projected to increase worldwide due to the growth of cities as well as the frequency of extreme rainfall events. Flood risk modelling at high resolution in megacities is now feasible due to the advent of high spatial resolution terrain data, fast and accurate hydrodynamic models, and the power of cloud computing platforms. Analysing the flood exposure of urban features in these cities during multiple storm events is essential to understanding flood risk for insurance and planning and ultimately for designing resilient solutions. This study focuses on London, UK, a sprawling megacity that has experienced damaging floods in the last few years. The analysis highlights the key role of accurate digital terrain models (DTMs) in hydrodynamic models. Flood exposure at individual building level is evaluated using the outputs from the CityCAT model driven by a range of design storms of different magnitudes, including validation with observations of a real storm event that hit London on the 12 July 2021. Overall, a novel demonstration is presented of how cloud-based flood modelling can be used to inform exposure insurance and flood resilience in cities of any size worldwide, and a specification is presented of what datasets are needed to achieve this aim." @default.
- W4387120719 created "2023-09-29" @default.
- W4387120719 creator A5037626963 @default.
- W4387120719 creator A5045323364 @default.
- W4387120719 creator A5084241263 @default.
- W4387120719 date "2023-09-27" @default.
- W4387120719 modified "2023-10-18" @default.
- W4387120719 title "Cloud Modelling of Property-Level Flood Exposure in Megacities" @default.
- W4387120719 cites W1138522407 @default.
- W4387120719 cites W1840267755 @default.
- W4387120719 cites W1972074586 @default.
- W4387120719 cites W1976691500 @default.
- W4387120719 cites W1999047739 @default.
- W4387120719 cites W2015679522 @default.
- W4387120719 cites W2053185607 @default.
- W4387120719 cites W2054289899 @default.
- W4387120719 cites W2055668893 @default.
- W4387120719 cites W2073060807 @default.
- W4387120719 cites W2089699464 @default.
- W4387120719 cites W2136037795 @default.
- W4387120719 cites W2163648146 @default.
- W4387120719 cites W2303417655 @default.
- W4387120719 cites W2463378697 @default.
- W4387120719 cites W2466177193 @default.
- W4387120719 cites W2593388048 @default.
- W4387120719 cites W2607844089 @default.
- W4387120719 cites W2611241749 @default.
- W4387120719 cites W2756145267 @default.
- W4387120719 cites W2765577273 @default.
- W4387120719 cites W2770892492 @default.
- W4387120719 cites W2807638832 @default.
- W4387120719 cites W2886751985 @default.
- W4387120719 cites W2887584319 @default.
- W4387120719 cites W2900408066 @default.
- W4387120719 cites W2903220409 @default.
- W4387120719 cites W2921886170 @default.
- W4387120719 cites W2948451340 @default.
- W4387120719 cites W2965598025 @default.
- W4387120719 cites W2966974380 @default.
- W4387120719 cites W3088729600 @default.
- W4387120719 cites W3099039145 @default.
- W4387120719 cites W3117506853 @default.
- W4387120719 cites W3120684430 @default.
- W4387120719 cites W3137661019 @default.
- W4387120719 cites W3162076198 @default.
- W4387120719 cites W3172930028 @default.
- W4387120719 cites W4213131445 @default.
- W4387120719 cites W4220807507 @default.
- W4387120719 cites W4248376615 @default.
- W4387120719 cites W4286560254 @default.
- W4387120719 cites W4291278338 @default.
- W4387120719 cites W4293226370 @default.
- W4387120719 cites W4310164879 @default.
- W4387120719 cites W4315786181 @default.
- W4387120719 cites W4318777257 @default.
- W4387120719 cites W4319080909 @default.
- W4387120719 cites W4320085898 @default.
- W4387120719 cites W4324382257 @default.
- W4387120719 cites W4365452315 @default.
- W4387120719 cites W4376956602 @default.
- W4387120719 cites W4379052131 @default.
- W4387120719 cites W4385948549 @default.
- W4387120719 cites W4386851536 @default.
- W4387120719 doi "https://doi.org/10.3390/w15193395" @default.
- W4387120719 hasPublicationYear "2023" @default.
- W4387120719 type Work @default.
- W4387120719 citedByCount "0" @default.
- W4387120719 crossrefType "journal-article" @default.
- W4387120719 hasAuthorship W4387120719A5037626963 @default.
- W4387120719 hasAuthorship W4387120719A5045323364 @default.
- W4387120719 hasAuthorship W4387120719A5084241263 @default.
- W4387120719 hasBestOaLocation W43871207191 @default.
- W4387120719 hasConcept C105306849 @default.
- W4387120719 hasConcept C111919701 @default.
- W4387120719 hasConcept C127040729 @default.
- W4387120719 hasConcept C136264566 @default.
- W4387120719 hasConcept C153294291 @default.
- W4387120719 hasConcept C161840515 @default.
- W4387120719 hasConcept C162324750 @default.
- W4387120719 hasConcept C166957645 @default.
- W4387120719 hasConcept C181843262 @default.
- W4387120719 hasConcept C205649164 @default.
- W4387120719 hasConcept C39432304 @default.
- W4387120719 hasConcept C41008148 @default.
- W4387120719 hasConcept C58640448 @default.
- W4387120719 hasConcept C62649853 @default.
- W4387120719 hasConcept C74256435 @default.
- W4387120719 hasConcept C79974875 @default.
- W4387120719 hasConceptScore W4387120719C105306849 @default.
- W4387120719 hasConceptScore W4387120719C111919701 @default.
- W4387120719 hasConceptScore W4387120719C127040729 @default.
- W4387120719 hasConceptScore W4387120719C136264566 @default.
- W4387120719 hasConceptScore W4387120719C153294291 @default.
- W4387120719 hasConceptScore W4387120719C161840515 @default.
- W4387120719 hasConceptScore W4387120719C162324750 @default.
- W4387120719 hasConceptScore W4387120719C166957645 @default.
- W4387120719 hasConceptScore W4387120719C181843262 @default.
- W4387120719 hasConceptScore W4387120719C205649164 @default.