Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387126686> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4387126686 abstract "Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting existing transmissions rather than dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users and four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2× throughput gain over baseline and a 30% throughput gain over existing prediction algorithms." @default.
- W4387126686 created "2023-09-29" @default.
- W4387126686 creator A5022784496 @default.
- W4387126686 creator A5034071044 @default.
- W4387126686 creator A5050964830 @default.
- W4387126686 creator A5064963698 @default.
- W4387126686 creator A5091870684 @default.
- W4387126686 date "2023-10-16" @default.
- W4387126686 modified "2023-10-18" @default.
- W4387126686 title "Scalable Multi-Modal Learning for Cross-Link Channel Prediction in Massive IoT Networks" @default.
- W4387126686 cites W2077077908 @default.
- W4387126686 cites W2151949275 @default.
- W4387126686 cites W2488265751 @default.
- W4387126686 cites W2762605243 @default.
- W4387126686 cites W2793967010 @default.
- W4387126686 cites W2808465901 @default.
- W4387126686 cites W2895191479 @default.
- W4387126686 cites W2963207848 @default.
- W4387126686 cites W2963283377 @default.
- W4387126686 cites W2979924295 @default.
- W4387126686 cites W3201512878 @default.
- W4387126686 doi "https://doi.org/10.1145/3565287.3610280" @default.
- W4387126686 hasPublicationYear "2023" @default.
- W4387126686 type Work @default.
- W4387126686 citedByCount "0" @default.
- W4387126686 crossrefType "proceedings-article" @default.
- W4387126686 hasAuthorship W4387126686A5022784496 @default.
- W4387126686 hasAuthorship W4387126686A5034071044 @default.
- W4387126686 hasAuthorship W4387126686A5050964830 @default.
- W4387126686 hasAuthorship W4387126686A5064963698 @default.
- W4387126686 hasAuthorship W4387126686A5091870684 @default.
- W4387126686 hasConcept C111919701 @default.
- W4387126686 hasConcept C127162648 @default.
- W4387126686 hasConcept C138660444 @default.
- W4387126686 hasConcept C148063708 @default.
- W4387126686 hasConcept C153083717 @default.
- W4387126686 hasConcept C154945302 @default.
- W4387126686 hasConcept C157764524 @default.
- W4387126686 hasConcept C207987634 @default.
- W4387126686 hasConcept C2779960059 @default.
- W4387126686 hasConcept C2781127089 @default.
- W4387126686 hasConcept C31258907 @default.
- W4387126686 hasConcept C41008148 @default.
- W4387126686 hasConcept C48044578 @default.
- W4387126686 hasConcept C555944384 @default.
- W4387126686 hasConcept C76155785 @default.
- W4387126686 hasConcept C77088390 @default.
- W4387126686 hasConcept C79403827 @default.
- W4387126686 hasConceptScore W4387126686C111919701 @default.
- W4387126686 hasConceptScore W4387126686C127162648 @default.
- W4387126686 hasConceptScore W4387126686C138660444 @default.
- W4387126686 hasConceptScore W4387126686C148063708 @default.
- W4387126686 hasConceptScore W4387126686C153083717 @default.
- W4387126686 hasConceptScore W4387126686C154945302 @default.
- W4387126686 hasConceptScore W4387126686C157764524 @default.
- W4387126686 hasConceptScore W4387126686C207987634 @default.
- W4387126686 hasConceptScore W4387126686C2779960059 @default.
- W4387126686 hasConceptScore W4387126686C2781127089 @default.
- W4387126686 hasConceptScore W4387126686C31258907 @default.
- W4387126686 hasConceptScore W4387126686C41008148 @default.
- W4387126686 hasConceptScore W4387126686C48044578 @default.
- W4387126686 hasConceptScore W4387126686C555944384 @default.
- W4387126686 hasConceptScore W4387126686C76155785 @default.
- W4387126686 hasConceptScore W4387126686C77088390 @default.
- W4387126686 hasConceptScore W4387126686C79403827 @default.
- W4387126686 hasFunder F4320306076 @default.
- W4387126686 hasLocation W43871266861 @default.
- W4387126686 hasOpenAccess W4387126686 @default.
- W4387126686 hasPrimaryLocation W43871266861 @default.
- W4387126686 hasRelatedWork W1491101245 @default.
- W4387126686 hasRelatedWork W2137509205 @default.
- W4387126686 hasRelatedWork W2793383610 @default.
- W4387126686 hasRelatedWork W2901271455 @default.
- W4387126686 hasRelatedWork W3092731089 @default.
- W4387126686 hasRelatedWork W3190774574 @default.
- W4387126686 hasRelatedWork W3214412616 @default.
- W4387126686 hasRelatedWork W4200317983 @default.
- W4387126686 hasRelatedWork W4287642618 @default.
- W4387126686 hasRelatedWork W4291722335 @default.
- W4387126686 isParatext "false" @default.
- W4387126686 isRetracted "false" @default.
- W4387126686 workType "article" @default.