Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387127150> ?p ?o ?g. }
- W4387127150 endingPage "124732" @default.
- W4387127150 startingPage "124732" @default.
- W4387127150 abstract "This study is part of the Flow Boiling and Condensation Experiment (FBCE), a collaborative effort between the Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) and the NASA Glenn Research Center. The FBCE fitted with the Flow Boiling Module (FBM) was launched to the International Space Station (ISS) in August 2021 and experiments were successfully performed from February to July 2022 to amass a large microgravity-flow-boiling database. This study is focused on heat transfer and flow visualization of microgravity flow boiling of n-Perfluorohexane in a rectangular channel of 5.0 mm height, 2.5 mm width (heated), and 114.6 mm length, with subcooled inlet conditions. High-speed-video photography is utilized to present flow patterns and temporal interfacial behavior. Heat transfer results are presented in the form of flow boiling curves and both parametric curves and streamwise profiles of wall temperature and heat transfer coefficient. Firstly, the parametric effects of mass velocity (199.4 – 3200.0 kg/m2s), inlet subcooling (0.2 – 46.0°C), and inlet pressure (124.2 – 176.7 kPa), on the aforementioned aspects are assessed for double-sided heating to establish them for a microgravity environment. Of these three parameters, mass velocity and inlet subcooling mostly determine the microgravity flow boiling behavior, while inlet pressure plays an insignificant role. Flow patterns for double-sided heating are more complex than those for single-sided heating due to interaction between the two vapor layers. Vapor interaction is minimized at high subcoolings and high mass velocities due to strong condensation offered by the subcooled bulk liquid layer separating them. Despite the different flow patterns, both single- and double-sided heating generally result in similar parametric trends and local heat transfer coefficients for similar operating conditions. Flow instabilities manifest as temporal flow anomalies and temperature oscillations, and their severity increases with increasing boiling number. Secondly, the effects of heating configuration are analyzed by comparing and contrasting several aspects of single- and double-sided heating data. The heat fluxes at which onset of nucleate boiling degradation (ONBD) and critical heat flux (CHF) occur are distinctly different for single- and double-sided heating. There exists a threshold inlet subcooling demarcating the dominance of flow acceleration and condensation effects in vapor removal from the near-wall region and replenishment of fresh liquid for boiling. Above the threshold, condensation from the near-wall region is dominant and single-sided heating yields higher heat fluxes, and below it, acceleration is dominant and double-sided yields higher heat fluxes. At mass velocity in the range of 200 – 2400 kg/m2s, the threshold inlet subcooling lies in the approximate range of 20 – 30°C (corresponding inlet quality of roughly -0.40 – -0.20)." @default.
- W4387127150 created "2023-09-29" @default.
- W4387127150 creator A5009502451 @default.
- W4387127150 creator A5012486749 @default.
- W4387127150 creator A5030653020 @default.
- W4387127150 creator A5049854515 @default.
- W4387127150 creator A5066817862 @default.
- W4387127150 creator A5087467777 @default.
- W4387127150 creator A5090205389 @default.
- W4387127150 date "2023-12-01" @default.
- W4387127150 modified "2023-10-18" @default.
- W4387127150 title "Effects of heating configuration and operating parameters on heat transfer and interfacial physics of microgravity flow boiling with subcooled inlet conditions – Experiments onboard the International Space Station" @default.
- W4387127150 cites W1488927709 @default.
- W4387127150 cites W1974396737 @default.
- W4387127150 cites W1979809666 @default.
- W4387127150 cites W1985313242 @default.
- W4387127150 cites W1999403365 @default.
- W4387127150 cites W2015400169 @default.
- W4387127150 cites W2019480052 @default.
- W4387127150 cites W2019994053 @default.
- W4387127150 cites W2025117660 @default.
- W4387127150 cites W2041264658 @default.
- W4387127150 cites W2042964828 @default.
- W4387127150 cites W2058617793 @default.
- W4387127150 cites W2059000112 @default.
- W4387127150 cites W2073241671 @default.
- W4387127150 cites W2079404195 @default.
- W4387127150 cites W2082262944 @default.
- W4387127150 cites W2087866844 @default.
- W4387127150 cites W2118381114 @default.
- W4387127150 cites W2122596799 @default.
- W4387127150 cites W2138229157 @default.
- W4387127150 cites W2141566388 @default.
- W4387127150 cites W2155856943 @default.
- W4387127150 cites W2495055634 @default.
- W4387127150 cites W2806123843 @default.
- W4387127150 cites W2891428896 @default.
- W4387127150 cites W2988456684 @default.
- W4387127150 cites W3011621061 @default.
- W4387127150 cites W3148249280 @default.
- W4387127150 cites W3194917385 @default.
- W4387127150 cites W3216741347 @default.
- W4387127150 cites W4206309840 @default.
- W4387127150 cites W4210778298 @default.
- W4387127150 cites W4224303433 @default.
- W4387127150 cites W4284894078 @default.
- W4387127150 cites W4289794169 @default.
- W4387127150 cites W4293038573 @default.
- W4387127150 cites W4294957536 @default.
- W4387127150 cites W4312077935 @default.
- W4387127150 cites W4322494348 @default.
- W4387127150 cites W4323306001 @default.
- W4387127150 cites W4378895525 @default.
- W4387127150 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2023.124732" @default.
- W4387127150 hasPublicationYear "2023" @default.
- W4387127150 type Work @default.
- W4387127150 citedByCount "0" @default.
- W4387127150 crossrefType "journal-article" @default.
- W4387127150 hasAuthorship W4387127150A5009502451 @default.
- W4387127150 hasAuthorship W4387127150A5012486749 @default.
- W4387127150 hasAuthorship W4387127150A5030653020 @default.
- W4387127150 hasAuthorship W4387127150A5049854515 @default.
- W4387127150 hasAuthorship W4387127150A5066817862 @default.
- W4387127150 hasAuthorship W4387127150A5087467777 @default.
- W4387127150 hasAuthorship W4387127150A5090205389 @default.
- W4387127150 hasConcept C115139850 @default.
- W4387127150 hasConcept C121332964 @default.
- W4387127150 hasConcept C127413603 @default.
- W4387127150 hasConcept C153294291 @default.
- W4387127150 hasConcept C157777378 @default.
- W4387127150 hasConcept C192562407 @default.
- W4387127150 hasConcept C197194406 @default.
- W4387127150 hasConcept C201289731 @default.
- W4387127150 hasConcept C29700514 @default.
- W4387127150 hasConcept C33493971 @default.
- W4387127150 hasConcept C38349280 @default.
- W4387127150 hasConcept C50517652 @default.
- W4387127150 hasConcept C57879066 @default.
- W4387127150 hasConcept C78519656 @default.
- W4387127150 hasConcept C83893533 @default.
- W4387127150 hasConcept C97355855 @default.
- W4387127150 hasConceptScore W4387127150C115139850 @default.
- W4387127150 hasConceptScore W4387127150C121332964 @default.
- W4387127150 hasConceptScore W4387127150C127413603 @default.
- W4387127150 hasConceptScore W4387127150C153294291 @default.
- W4387127150 hasConceptScore W4387127150C157777378 @default.
- W4387127150 hasConceptScore W4387127150C192562407 @default.
- W4387127150 hasConceptScore W4387127150C197194406 @default.
- W4387127150 hasConceptScore W4387127150C201289731 @default.
- W4387127150 hasConceptScore W4387127150C29700514 @default.
- W4387127150 hasConceptScore W4387127150C33493971 @default.
- W4387127150 hasConceptScore W4387127150C38349280 @default.
- W4387127150 hasConceptScore W4387127150C50517652 @default.
- W4387127150 hasConceptScore W4387127150C57879066 @default.
- W4387127150 hasConceptScore W4387127150C78519656 @default.
- W4387127150 hasConceptScore W4387127150C83893533 @default.
- W4387127150 hasConceptScore W4387127150C97355855 @default.
- W4387127150 hasLocation W43871271501 @default.