Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387127379> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4387127379 abstract "Abstract The cetane number is an important fuel property to consider for compression ignition engines as it is a measure of a fuel’s ignition delay. Derived cetane number (DCN) already varies significantly within jet fuels. With the expected increasing prevalence of alternative jet fuels, additional variability is expected. DCN is usually assigned to fuels using ASTM methods that use large equipment like the Ignition Quality Tester (IQT), which consumes a lot of fuel and is cumbersome to operate. Over the last decade, there have been advances in the development of chemometric models, which use machine learning to correlate infrared spectra of fuels to fuel properties like DCN, density, and C/H ratio, amongst many others. These techniques have certain advantages over the ASTM methods, and previous studies performed on samples of diesel fuels have shown high accuracies in DCN prediction. However, this accuracy is generally a result of high resolution, making the equipment expensive, relatively large for handheld sensors, and power-hungry. On the other hand, nondispersive infrared (NDIR) sensors, despite having a low resolution, are attractive because they can be compact, inexpensive, and power efficient. These characteristics are important for handheld or onboard fuel sensors. However, one would anticipate a trade-off between these advantages and accuracy. This study investigates this trade-off and the feasibility of low-resolution NDIR sensors to discern fuel properties such as DCN by using Machine Learning models trained on real FTIR data, and DCNs obtained from IQT. DCN predictions were made for blends of ATJ/F-24, CN fuels, and neat Jet A1, A2, and JP 5, with an error limit of 10%. It was found that there seems to be sufficient variability in the near infrared range to discern DCN with a feasible number of channels, but the channels have to be narrow (e.g. FWHMs as narrow as 60nm). For the data set in the study, the performance of linear models was better than the non-linear model. Finally, NIR region beyond 1050 nm was found to be more important in DCN prediction, primarily the regions consisting of the first and second C-H overtones and the C-H combination band." @default.
- W4387127379 created "2023-09-29" @default.
- W4387127379 creator A5014782334 @default.
- W4387127379 creator A5035853805 @default.
- W4387127379 creator A5048944508 @default.
- W4387127379 creator A5063100344 @default.
- W4387127379 creator A5063813991 @default.
- W4387127379 creator A5084107598 @default.
- W4387127379 creator A5087849249 @default.
- W4387127379 date "2023-06-26" @default.
- W4387127379 modified "2023-10-18" @default.
- W4387127379 title "Prospects for Low-Resolution NDIR Sensors to Discern Ignition Properties of Fuels" @default.
- W4387127379 doi "https://doi.org/10.1115/gt2023-104214" @default.
- W4387127379 hasPublicationYear "2023" @default.
- W4387127379 type Work @default.
- W4387127379 citedByCount "0" @default.
- W4387127379 crossrefType "proceedings-article" @default.
- W4387127379 hasAuthorship W4387127379A5014782334 @default.
- W4387127379 hasAuthorship W4387127379A5035853805 @default.
- W4387127379 hasAuthorship W4387127379A5048944508 @default.
- W4387127379 hasAuthorship W4387127379A5063100344 @default.
- W4387127379 hasAuthorship W4387127379A5063813991 @default.
- W4387127379 hasAuthorship W4387127379A5084107598 @default.
- W4387127379 hasAuthorship W4387127379A5087849249 @default.
- W4387127379 hasConcept C127413603 @default.
- W4387127379 hasConcept C138171918 @default.
- W4387127379 hasConcept C146978453 @default.
- W4387127379 hasConcept C159063594 @default.
- W4387127379 hasConcept C161790260 @default.
- W4387127379 hasConcept C171146098 @default.
- W4387127379 hasConcept C180511626 @default.
- W4387127379 hasConcept C185592680 @default.
- W4387127379 hasConcept C21880701 @default.
- W4387127379 hasConcept C39432304 @default.
- W4387127379 hasConcept C41008148 @default.
- W4387127379 hasConcept C52896960 @default.
- W4387127379 hasConcept C548081761 @default.
- W4387127379 hasConcept C55062507 @default.
- W4387127379 hasConcept C55493867 @default.
- W4387127379 hasConceptScore W4387127379C127413603 @default.
- W4387127379 hasConceptScore W4387127379C138171918 @default.
- W4387127379 hasConceptScore W4387127379C146978453 @default.
- W4387127379 hasConceptScore W4387127379C159063594 @default.
- W4387127379 hasConceptScore W4387127379C161790260 @default.
- W4387127379 hasConceptScore W4387127379C171146098 @default.
- W4387127379 hasConceptScore W4387127379C180511626 @default.
- W4387127379 hasConceptScore W4387127379C185592680 @default.
- W4387127379 hasConceptScore W4387127379C21880701 @default.
- W4387127379 hasConceptScore W4387127379C39432304 @default.
- W4387127379 hasConceptScore W4387127379C41008148 @default.
- W4387127379 hasConceptScore W4387127379C52896960 @default.
- W4387127379 hasConceptScore W4387127379C548081761 @default.
- W4387127379 hasConceptScore W4387127379C55062507 @default.
- W4387127379 hasConceptScore W4387127379C55493867 @default.
- W4387127379 hasLocation W43871273791 @default.
- W4387127379 hasOpenAccess W4387127379 @default.
- W4387127379 hasPrimaryLocation W43871273791 @default.
- W4387127379 hasRelatedWork W1040078890 @default.
- W4387127379 hasRelatedWork W2056565028 @default.
- W4387127379 hasRelatedWork W2330270720 @default.
- W4387127379 hasRelatedWork W2388465525 @default.
- W4387127379 hasRelatedWork W2735983776 @default.
- W4387127379 hasRelatedWork W2970920826 @default.
- W4387127379 hasRelatedWork W3015888150 @default.
- W4387127379 hasRelatedWork W3114554099 @default.
- W4387127379 hasRelatedWork W4383878426 @default.
- W4387127379 hasRelatedWork W576971086 @default.
- W4387127379 isParatext "false" @default.
- W4387127379 isRetracted "false" @default.
- W4387127379 workType "article" @default.