Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387130479> ?p ?o ?g. }
- W4387130479 abstract "Understanding and predicting molecular responses in single cells upon chemical, genetic or mechanical perturbations is a core question in biology. Obtaining single-cell measurements typically requires the cells to be destroyed. This makes learning heterogeneous perturbation responses challenging as we only observe unpaired distributions of perturbed or non-perturbed cells. Here we leverage the theory of optimal transport and the recent advent of input convex neural architectures to present CellOT, a framework for learning the response of individual cells to a given perturbation by mapping these unpaired distributions. CellOT outperforms current methods at predicting single-cell drug responses, as profiled by scRNA-seq and a multiplexed protein-imaging technology. Further, we illustrate that CellOT generalizes well on unseen settings by (1) predicting the scRNA-seq responses of holdout patients with lupus exposed to interferon-β and patients with glioblastoma to panobinostat; (2) inferring lipopolysaccharide responses across different species; and (3) modeling the hematopoietic developmental trajectories of different subpopulations." @default.
- W4387130479 created "2023-09-29" @default.
- W4387130479 creator A5003040843 @default.
- W4387130479 creator A5022555275 @default.
- W4387130479 creator A5029069228 @default.
- W4387130479 creator A5033283546 @default.
- W4387130479 creator A5035416263 @default.
- W4387130479 creator A5038601102 @default.
- W4387130479 creator A5049255125 @default.
- W4387130479 creator A5077524386 @default.
- W4387130479 creator A5081406271 @default.
- W4387130479 date "2023-09-28" @default.
- W4387130479 modified "2023-09-30" @default.
- W4387130479 title "Learning single-cell perturbation responses using neural optimal transport" @default.
- W4387130479 cites W1585160083 @default.
- W4387130479 cites W1605977136 @default.
- W4387130479 cites W1848470479 @default.
- W4387130479 cites W1924924816 @default.
- W4387130479 cites W1974683325 @default.
- W4387130479 cites W1990267747 @default.
- W4387130479 cites W1996655390 @default.
- W4387130479 cites W2002818875 @default.
- W4387130479 cites W2013888332 @default.
- W4387130479 cites W2093470850 @default.
- W4387130479 cites W2105437003 @default.
- W4387130479 cites W2106309288 @default.
- W4387130479 cites W2211016425 @default.
- W4387130479 cites W2300290254 @default.
- W4387130479 cites W2621895366 @default.
- W4387130479 cites W2774307122 @default.
- W4387130479 cites W2887091285 @default.
- W4387130479 cites W2889326414 @default.
- W4387130479 cites W2897748644 @default.
- W4387130479 cites W2901677030 @default.
- W4387130479 cites W2911279170 @default.
- W4387130479 cites W2965552103 @default.
- W4387130479 cites W2993905360 @default.
- W4387130479 cites W2997834390 @default.
- W4387130479 cites W3002219094 @default.
- W4387130479 cites W3017662469 @default.
- W4387130479 cites W3022836409 @default.
- W4387130479 cites W3047141442 @default.
- W4387130479 cites W3096333621 @default.
- W4387130479 cites W3111256553 @default.
- W4387130479 cites W3134444564 @default.
- W4387130479 cites W3154094825 @default.
- W4387130479 cites W3160156316 @default.
- W4387130479 cites W3189383967 @default.
- W4387130479 cites W3215961257 @default.
- W4387130479 cites W4206087897 @default.
- W4387130479 cites W4210832122 @default.
- W4387130479 cites W4233762729 @default.
- W4387130479 cites W4285388094 @default.
- W4387130479 cites W4308885567 @default.
- W4387130479 doi "https://doi.org/10.1038/s41592-023-01969-x" @default.
- W4387130479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37770709" @default.
- W4387130479 hasPublicationYear "2023" @default.
- W4387130479 type Work @default.
- W4387130479 citedByCount "0" @default.
- W4387130479 crossrefType "journal-article" @default.
- W4387130479 hasAuthorship W4387130479A5003040843 @default.
- W4387130479 hasAuthorship W4387130479A5022555275 @default.
- W4387130479 hasAuthorship W4387130479A5029069228 @default.
- W4387130479 hasAuthorship W4387130479A5033283546 @default.
- W4387130479 hasAuthorship W4387130479A5035416263 @default.
- W4387130479 hasAuthorship W4387130479A5038601102 @default.
- W4387130479 hasAuthorship W4387130479A5049255125 @default.
- W4387130479 hasAuthorship W4387130479A5077524386 @default.
- W4387130479 hasAuthorship W4387130479A5081406271 @default.
- W4387130479 hasBestOaLocation W43871304791 @default.
- W4387130479 hasConcept C109159458 @default.
- W4387130479 hasConcept C119857082 @default.
- W4387130479 hasConcept C120665830 @default.
- W4387130479 hasConcept C121332964 @default.
- W4387130479 hasConcept C153083717 @default.
- W4387130479 hasConcept C154945302 @default.
- W4387130479 hasConcept C169822122 @default.
- W4387130479 hasConcept C177918212 @default.
- W4387130479 hasConcept C186060115 @default.
- W4387130479 hasConcept C28328180 @default.
- W4387130479 hasConcept C2993713153 @default.
- W4387130479 hasConcept C41008148 @default.
- W4387130479 hasConcept C50644808 @default.
- W4387130479 hasConcept C62520636 @default.
- W4387130479 hasConcept C70721500 @default.
- W4387130479 hasConcept C86803240 @default.
- W4387130479 hasConcept C95444343 @default.
- W4387130479 hasConceptScore W4387130479C109159458 @default.
- W4387130479 hasConceptScore W4387130479C119857082 @default.
- W4387130479 hasConceptScore W4387130479C120665830 @default.
- W4387130479 hasConceptScore W4387130479C121332964 @default.
- W4387130479 hasConceptScore W4387130479C153083717 @default.
- W4387130479 hasConceptScore W4387130479C154945302 @default.
- W4387130479 hasConceptScore W4387130479C169822122 @default.
- W4387130479 hasConceptScore W4387130479C177918212 @default.
- W4387130479 hasConceptScore W4387130479C186060115 @default.
- W4387130479 hasConceptScore W4387130479C28328180 @default.
- W4387130479 hasConceptScore W4387130479C2993713153 @default.
- W4387130479 hasConceptScore W4387130479C41008148 @default.
- W4387130479 hasConceptScore W4387130479C50644808 @default.