Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387130495> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4387130495 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> A physical-statistical framework to estimate Snow Water Equivalent (SWE) and snow depth from SAR measurements is presented and applied to four SnowSAR flight-line data sets collected during the SnowEx’2017 field campaign in Grand Mesa, Colorado, USA. The physical (radar) model is used to describe the relationship between snowpack conditions and volume backscatter. The statistical model is a Bayesian inference model that seeks to estimate the joint probability distribution of volume backscatter measurements, snow density and snow depth, and physical model parameters. Prior distributions are derived from multilayer snow hydrology predictions driven by downscaled numerical weather prediction (NWP) forecasts. To reduce noise to signal ratio, SnowSAR measurements at 1 m resolution were upscaled by simple averaging to 30 and 90 m resolution. To reduce the number of physical parameters, the multilayer snowpack is transformed for Bayesian inference into an equivalent single- or two-layer snowpack with the same snow mass and volume backscatter. Successful retrievals, defined by absolute convergence backscatter errors ≤ 1.2 dB and local SnowSAR incidence angles between 30° and 45° for X- and Ku-band VV-pol backscatter measurements, were achieved for 75 % to 87 % for all grassland pixels with SWE up to 0.7 m and snow depth up to 2 m. SWE retrievals compare well with snow pit observations showing strong skill in deep snow with average absolute SWE residuals of 5–7 % (15–18 %) for the two-layer (single-layer) retrieval algorithm. Furthermore, the spatial distributions of snow depth retrievals vis-à-vis LIDAR estimates have Bhattacharya Coefficients above 94 % (90 %) for grassland pixels at 30 m (90 m resolution), and values up to 76 % in mixed forest and grassland areas indicating that the retrievals closely capture snowpack spatial variability. Because NWP forecasts are available everywhere, the proposed approach could be applied to SWE and snow depth retrievals from a dedicated global snow mission." @default.
- W4387130495 created "2023-09-29" @default.
- W4387130495 creator A5014989143 @default.
- W4387130495 date "2023-09-28" @default.
- W4387130495 modified "2023-10-18" @default.
- W4387130495 title "Comment on egusphere-2023-1987" @default.
- W4387130495 doi "https://doi.org/10.5194/egusphere-2023-1987-ac1" @default.
- W4387130495 hasPublicationYear "2023" @default.
- W4387130495 type Work @default.
- W4387130495 citedByCount "0" @default.
- W4387130495 crossrefType "peer-review" @default.
- W4387130495 hasAuthorship W4387130495A5014989143 @default.
- W4387130495 hasBestOaLocation W43871304951 @default.
- W4387130495 hasConcept C127313418 @default.
- W4387130495 hasConcept C153294291 @default.
- W4387130495 hasConcept C197046000 @default.
- W4387130495 hasConcept C205649164 @default.
- W4387130495 hasConcept C2778877292 @default.
- W4387130495 hasConcept C30354325 @default.
- W4387130495 hasConcept C39432304 @default.
- W4387130495 hasConcept C41008148 @default.
- W4387130495 hasConcept C555944384 @default.
- W4387130495 hasConcept C62649853 @default.
- W4387130495 hasConcept C76155785 @default.
- W4387130495 hasConceptScore W4387130495C127313418 @default.
- W4387130495 hasConceptScore W4387130495C153294291 @default.
- W4387130495 hasConceptScore W4387130495C197046000 @default.
- W4387130495 hasConceptScore W4387130495C205649164 @default.
- W4387130495 hasConceptScore W4387130495C2778877292 @default.
- W4387130495 hasConceptScore W4387130495C30354325 @default.
- W4387130495 hasConceptScore W4387130495C39432304 @default.
- W4387130495 hasConceptScore W4387130495C41008148 @default.
- W4387130495 hasConceptScore W4387130495C555944384 @default.
- W4387130495 hasConceptScore W4387130495C62649853 @default.
- W4387130495 hasConceptScore W4387130495C76155785 @default.
- W4387130495 hasLocation W43871304951 @default.
- W4387130495 hasOpenAccess W4387130495 @default.
- W4387130495 hasPrimaryLocation W43871304951 @default.
- W4387130495 hasRelatedWork W1827826937 @default.
- W4387130495 hasRelatedWork W2013044996 @default.
- W4387130495 hasRelatedWork W2015177246 @default.
- W4387130495 hasRelatedWork W2116872382 @default.
- W4387130495 hasRelatedWork W2131373907 @default.
- W4387130495 hasRelatedWork W2135049428 @default.
- W4387130495 hasRelatedWork W3046765276 @default.
- W4387130495 hasRelatedWork W3100892439 @default.
- W4387130495 hasRelatedWork W3155989523 @default.
- W4387130495 hasRelatedWork W4317727046 @default.
- W4387130495 isParatext "false" @default.
- W4387130495 isRetracted "false" @default.
- W4387130495 workType "peer-review" @default.