Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131389> ?p ?o ?g. }
- W4387131389 endingPage "14" @default.
- W4387131389 startingPage "1" @default.
- W4387131389 abstract "Summary Geological sequestration of carbon dioxide (CO2) in depleted gas reservoirs represents a cost-effective solution to mitigate global carbon emissions. The surface chemistry of the reservoir rock, pressure, temperature, and moisture content are critical factors that determine the CO2 adsorption capacity and storage mechanisms. Shale-gas reservoirs are good candidates for this application. However, the interactions between CO2 and organic content still need further investigation. The objectives of this paper are to (i) experimentally evaluate the adsorption isotherm of CO2 on activated carbon, (ii) quantify the nanoscale interfacial interactions between CO2 and the activated carbon surface using Monte Carlo (MC) and molecular dynamic (MD) simulations, (iii) evaluate the modeling reliability using experimental measurements, and (iv) quantify the influence of temperature and geochemistry on the adsorption behavior of CO2 on the surface of activated carbon. These objectives aim at obtaining a better understanding of the behavior of CO2 injection and storage in the kerogen structure of shale-gas formations, where activated carbon is used as a proxy for thermally mature kerogen. We performed experimental measurements, grand canonical Monte Carlo (GCMC) simulations, and MD simulations of CO2 adsorption and diffusion on activated carbon. The experimental work involved measurements of the high-pressure adsorption capacity of activated carbon using pure CO2 gas at a temperature of 300 K. The simulation work started with modeling and validating an activated carbon structure by calibrating the GCMC simulations with experimental CO2 adsorption measurements. Then, we extended the simulation work to quantify the adsorption isotherms at a temperature range of 250–500 K and various surface chemistry conditions. Moreover, CO2 self-diffusion coefficients were quantified at gas pressures of 0.5 MPa, 1 MPa, and 2 MPa using MD simulations. The experimental results showed a typical CO2 excess adsorption trend for the nanoporous structures, with a density of the sorbed gas phase of 504.76 kg/m3. The simulation results were in agreement with experimental adsorption isotherms with a 10.6% average absolute relative difference. The self-diffusion results showed a decrease in gas diffusion with increasing pressure due to the increase in the adsorbed gas amount. Increasing the simulation temperature from 300 K to 400 K led to a decrease in the amount of adsorbed CO2 molecules by about 87% at 2 MPa pressure. Finally, the presence of charged functional groups (e.g., hydroxyl–OH and carboxyl–COOH) led to an increase in the adsorption of CO2 gas to the activated carbon surface. The outcomes of this paper provide new insights about the parameters affecting CO2 adsorption and sequestration in depleted shale-gas reservoirs. This in turn helps in screening the candidate shale-gas reservoirs for carbon capture, sequestration, and storage to maximize the CO2 storage capacity." @default.
- W4387131389 created "2023-09-29" @default.
- W4387131389 creator A5011571655 @default.
- W4387131389 creator A5030466499 @default.
- W4387131389 creator A5052256598 @default.
- W4387131389 creator A5067522916 @default.
- W4387131389 date "2023-09-01" @default.
- W4387131389 modified "2023-10-18" @default.
- W4387131389 title "Experimental Measurements and Molecular Simulation of Carbon Dioxide Adsorption on Carbon Surface" @default.
- W4387131389 cites W1556297585 @default.
- W4387131389 cites W1966336294 @default.
- W4387131389 cites W1966518824 @default.
- W4387131389 cites W1980990958 @default.
- W4387131389 cites W1990345452 @default.
- W4387131389 cites W1997596885 @default.
- W4387131389 cites W2011254969 @default.
- W4387131389 cites W2011509535 @default.
- W4387131389 cites W2032247692 @default.
- W4387131389 cites W2041902442 @default.
- W4387131389 cites W2047853051 @default.
- W4387131389 cites W2054667848 @default.
- W4387131389 cites W2060541472 @default.
- W4387131389 cites W2066917101 @default.
- W4387131389 cites W2071846792 @default.
- W4387131389 cites W2084266203 @default.
- W4387131389 cites W2084835954 @default.
- W4387131389 cites W2085822586 @default.
- W4387131389 cites W2087694362 @default.
- W4387131389 cites W2091872550 @default.
- W4387131389 cites W2096968228 @default.
- W4387131389 cites W2101398588 @default.
- W4387131389 cites W2104076412 @default.
- W4387131389 cites W2105314466 @default.
- W4387131389 cites W2119872499 @default.
- W4387131389 cites W2128855232 @default.
- W4387131389 cites W2156454985 @default.
- W4387131389 cites W2306064613 @default.
- W4387131389 cites W2318085486 @default.
- W4387131389 cites W2330801372 @default.
- W4387131389 cites W2336556815 @default.
- W4387131389 cites W2358009729 @default.
- W4387131389 cites W2513729865 @default.
- W4387131389 cites W2565842542 @default.
- W4387131389 cites W2584077525 @default.
- W4387131389 cites W2612968786 @default.
- W4387131389 cites W2770142553 @default.
- W4387131389 cites W2779008855 @default.
- W4387131389 cites W2793552077 @default.
- W4387131389 cites W2886281704 @default.
- W4387131389 cites W2901406389 @default.
- W4387131389 cites W2938365718 @default.
- W4387131389 cites W3001443035 @default.
- W4387131389 cites W3021204075 @default.
- W4387131389 cites W3033623008 @default.
- W4387131389 cites W3135827827 @default.
- W4387131389 cites W3138672303 @default.
- W4387131389 cites W3142235659 @default.
- W4387131389 cites W3142831270 @default.
- W4387131389 cites W3174225808 @default.
- W4387131389 cites W3188822804 @default.
- W4387131389 cites W4210563880 @default.
- W4387131389 doi "https://doi.org/10.2118/210264-pa" @default.
- W4387131389 hasPublicationYear "2023" @default.
- W4387131389 type Work @default.
- W4387131389 citedByCount "0" @default.
- W4387131389 crossrefType "journal-article" @default.
- W4387131389 hasAuthorship W4387131389A5011571655 @default.
- W4387131389 hasAuthorship W4387131389A5030466499 @default.
- W4387131389 hasAuthorship W4387131389A5052256598 @default.
- W4387131389 hasAuthorship W4387131389A5067522916 @default.
- W4387131389 hasConcept C104779481 @default.
- W4387131389 hasConcept C105795698 @default.
- W4387131389 hasConcept C109007969 @default.
- W4387131389 hasConcept C121332964 @default.
- W4387131389 hasConcept C126559015 @default.
- W4387131389 hasConcept C127313418 @default.
- W4387131389 hasConcept C127413603 @default.
- W4387131389 hasConcept C140205800 @default.
- W4387131389 hasConcept C147597530 @default.
- W4387131389 hasConcept C150394285 @default.
- W4387131389 hasConcept C151730666 @default.
- W4387131389 hasConcept C153127940 @default.
- W4387131389 hasConcept C159985019 @default.
- W4387131389 hasConcept C178790620 @default.
- W4387131389 hasConcept C185592680 @default.
- W4387131389 hasConcept C192562407 @default.
- W4387131389 hasConcept C19499675 @default.
- W4387131389 hasConcept C2779196632 @default.
- W4387131389 hasConcept C2779647737 @default.
- W4387131389 hasConcept C33923547 @default.
- W4387131389 hasConcept C42360764 @default.
- W4387131389 hasConcept C530467964 @default.
- W4387131389 hasConcept C548081761 @default.
- W4387131389 hasConcept C59593255 @default.
- W4387131389 hasConcept C78762247 @default.
- W4387131389 hasConcept C97355855 @default.
- W4387131389 hasConceptScore W4387131389C104779481 @default.
- W4387131389 hasConceptScore W4387131389C105795698 @default.