Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131401> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387131401 endingPage "100637" @default.
- W4387131401 startingPage "100637" @default.
- W4387131401 abstract "Traditional methods of risk assessment for thoracic aortic aneurysm (TAA) based on aneurysm size alone have been called into question as being unreliable in predicting complications. Biomechanical function of aortic tissue may be a better predictor of risk, but it is difficult to determine in vivo. This study investigates using a machine learning (ML) model as a correlative measure of energy loss, a measure of TAA biomechanical function. Biaxial tensile testing was performed on resected TAA tissue collected from patients undergoing surgery. The energy loss of the tissue was calculated and used as the representative output. Input parameters were collected from clinical assessments including observations from medical scans and genetic paneling. Four ML algorithms including Gaussian process regression were trained in Matlab. A total of 158 patients were considered (mean age 62 years, range 22-89 years, 78% male), including 11 healthy controls. The mean ascending aortic diameter was 47 ± 10 mm, with 46% having a bicuspid aortic valve. The best-performing model was found to give a greater correlative measure to energy loss (R2 = 0.63) than the surprisingly poor performance of aortic diameter (R2 = 0.26) and indexed aortic size (R2 = 0.32). An echocardiogram-derived stiffness metric was investigated on a smaller subcohort of 67 patients as an additional input, improving the correlative performance from R2 = 0.46 to R2 = 0.62. A preliminary set of models demonstrated the ability of a ML algorithm to improve prediction of the mechanical function of TAA tissue. This model can use clinical data to provide additional information for risk stratification." @default.
- W4387131401 created "2023-09-29" @default.
- W4387131401 creator A5004932640 @default.
- W4387131401 creator A5008846278 @default.
- W4387131401 creator A5030160931 @default.
- W4387131401 creator A5036319083 @default.
- W4387131401 creator A5055038462 @default.
- W4387131401 creator A5076020344 @default.
- W4387131401 creator A5078179592 @default.
- W4387131401 creator A5078859894 @default.
- W4387131401 creator A5083576194 @default.
- W4387131401 creator A5088260531 @default.
- W4387131401 date "2023-10-01" @default.
- W4387131401 modified "2023-10-11" @default.
- W4387131401 title "Thoracic Aortic Aneurysm Risk Assessment" @default.
- W4387131401 cites W1967536852 @default.
- W4387131401 cites W1973509784 @default.
- W4387131401 cites W1977348040 @default.
- W4387131401 cites W1978729944 @default.
- W4387131401 cites W1985233782 @default.
- W4387131401 cites W2002312306 @default.
- W4387131401 cites W2042451126 @default.
- W4387131401 cites W2064260678 @default.
- W4387131401 cites W2078642199 @default.
- W4387131401 cites W2081488602 @default.
- W4387131401 cites W2090066747 @default.
- W4387131401 cites W2120067886 @default.
- W4387131401 cites W2126750486 @default.
- W4387131401 cites W2146052423 @default.
- W4387131401 cites W2155140245 @default.
- W4387131401 cites W2177366844 @default.
- W4387131401 cites W2466879592 @default.
- W4387131401 cites W2509136010 @default.
- W4387131401 cites W2793260571 @default.
- W4387131401 cites W3088425215 @default.
- W4387131401 cites W3186942846 @default.
- W4387131401 cites W3214334672 @default.
- W4387131401 cites W4200007938 @default.
- W4387131401 cites W4308150433 @default.
- W4387131401 doi "https://doi.org/10.1016/j.jacadv.2023.100637" @default.
- W4387131401 hasPublicationYear "2023" @default.
- W4387131401 type Work @default.
- W4387131401 citedByCount "0" @default.
- W4387131401 crossrefType "journal-article" @default.
- W4387131401 hasAuthorship W4387131401A5004932640 @default.
- W4387131401 hasAuthorship W4387131401A5008846278 @default.
- W4387131401 hasAuthorship W4387131401A5030160931 @default.
- W4387131401 hasAuthorship W4387131401A5036319083 @default.
- W4387131401 hasAuthorship W4387131401A5055038462 @default.
- W4387131401 hasAuthorship W4387131401A5076020344 @default.
- W4387131401 hasAuthorship W4387131401A5078179592 @default.
- W4387131401 hasAuthorship W4387131401A5078859894 @default.
- W4387131401 hasAuthorship W4387131401A5083576194 @default.
- W4387131401 hasAuthorship W4387131401A5088260531 @default.
- W4387131401 hasBestOaLocation W43871314011 @default.
- W4387131401 hasConcept C126322002 @default.
- W4387131401 hasConcept C126838900 @default.
- W4387131401 hasConcept C164705383 @default.
- W4387131401 hasConcept C2776098176 @default.
- W4387131401 hasConcept C2777323849 @default.
- W4387131401 hasConcept C2780847584 @default.
- W4387131401 hasConcept C71924100 @default.
- W4387131401 hasConceptScore W4387131401C126322002 @default.
- W4387131401 hasConceptScore W4387131401C126838900 @default.
- W4387131401 hasConceptScore W4387131401C164705383 @default.
- W4387131401 hasConceptScore W4387131401C2776098176 @default.
- W4387131401 hasConceptScore W4387131401C2777323849 @default.
- W4387131401 hasConceptScore W4387131401C2780847584 @default.
- W4387131401 hasConceptScore W4387131401C71924100 @default.
- W4387131401 hasIssue "8" @default.
- W4387131401 hasLocation W43871314011 @default.
- W4387131401 hasOpenAccess W4387131401 @default.
- W4387131401 hasPrimaryLocation W43871314011 @default.
- W4387131401 hasRelatedWork W2011744972 @default.
- W4387131401 hasRelatedWork W2024110249 @default.
- W4387131401 hasRelatedWork W2036954913 @default.
- W4387131401 hasRelatedWork W2309212287 @default.
- W4387131401 hasRelatedWork W2391371845 @default.
- W4387131401 hasRelatedWork W2430187835 @default.
- W4387131401 hasRelatedWork W4225960012 @default.
- W4387131401 hasRelatedWork W4243347386 @default.
- W4387131401 hasRelatedWork W4309076911 @default.
- W4387131401 hasRelatedWork W4376872149 @default.
- W4387131401 hasVolume "2" @default.
- W4387131401 isParatext "false" @default.
- W4387131401 isRetracted "false" @default.
- W4387131401 workType "article" @default.