Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131593> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387131593 endingPage "545" @default.
- W4387131593 startingPage "538" @default.
- W4387131593 abstract "Last time there are unbelievable results in Natural Language Processing(NLP) and Automatic Speech Recognition(ASR). As a result, everybody can use smart search engines such as ChatGPT, smart voice assistants such as Siri, Alexa and more. But these opportunities are available only to the people who can use English or other common languages. For people who use low-resource languages these products are not available. As collection of transcribed data is time consuming and expensive process, scientists search ways of implementing reliable ASR models for low-resource languages. One of ASR improving methods in the case of lack of data is the use of external language model built on text larger than text in the entire dataset. And use this language model in the decoding process. As Kazakh language is also one of low-resource languages it is was decided to test this approach for kazakh language with different language models like Sequential RNNLM and Transformer LM. Inclusion of language model trained on bigger dataset allowed to decrease error values especially for Word Error Rate (WER). The best result was obtained with Transformer LM, WER was decreased to 7.2%." @default.
- W4387131593 created "2023-09-29" @default.
- W4387131593 creator A5011502758 @default.
- W4387131593 creator A5012218806 @default.
- W4387131593 creator A5013898121 @default.
- W4387131593 creator A5048439047 @default.
- W4387131593 creator A5083676887 @default.
- W4387131593 creator A5089647750 @default.
- W4387131593 date "2023-01-01" @default.
- W4387131593 modified "2023-10-17" @default.
- W4387131593 title "Automatic Speech Recognition Improvement for Kazakh Language with Enhanced Language Model" @default.
- W4387131593 cites W2962780374 @default.
- W4387131593 cites W3085387930 @default.
- W4387131593 cites W3102259066 @default.
- W4387131593 cites W3163793923 @default.
- W4387131593 cites W3196321886 @default.
- W4387131593 cites W4205905456 @default.
- W4387131593 cites W4220689448 @default.
- W4387131593 cites W4224916448 @default.
- W4387131593 cites W4280556124 @default.
- W4387131593 cites W4283812781 @default.
- W4387131593 cites W4296069324 @default.
- W4387131593 cites W4297491180 @default.
- W4387131593 cites W4318484710 @default.
- W4387131593 doi "https://doi.org/10.1007/978-3-031-42430-4_44" @default.
- W4387131593 hasPublicationYear "2023" @default.
- W4387131593 type Work @default.
- W4387131593 citedByCount "0" @default.
- W4387131593 crossrefType "book-chapter" @default.
- W4387131593 hasAuthorship W4387131593A5011502758 @default.
- W4387131593 hasAuthorship W4387131593A5012218806 @default.
- W4387131593 hasAuthorship W4387131593A5013898121 @default.
- W4387131593 hasAuthorship W4387131593A5048439047 @default.
- W4387131593 hasAuthorship W4387131593A5083676887 @default.
- W4387131593 hasAuthorship W4387131593A5089647750 @default.
- W4387131593 hasConcept C121332964 @default.
- W4387131593 hasConcept C137293760 @default.
- W4387131593 hasConcept C138885662 @default.
- W4387131593 hasConcept C154945302 @default.
- W4387131593 hasConcept C165801399 @default.
- W4387131593 hasConcept C195324797 @default.
- W4387131593 hasConcept C199360897 @default.
- W4387131593 hasConcept C204321447 @default.
- W4387131593 hasConcept C2781297163 @default.
- W4387131593 hasConcept C28490314 @default.
- W4387131593 hasConcept C40969351 @default.
- W4387131593 hasConcept C41008148 @default.
- W4387131593 hasConcept C41895202 @default.
- W4387131593 hasConcept C57273362 @default.
- W4387131593 hasConcept C62520636 @default.
- W4387131593 hasConcept C66322947 @default.
- W4387131593 hasConcept C76155785 @default.
- W4387131593 hasConcept C98045186 @default.
- W4387131593 hasConceptScore W4387131593C121332964 @default.
- W4387131593 hasConceptScore W4387131593C137293760 @default.
- W4387131593 hasConceptScore W4387131593C138885662 @default.
- W4387131593 hasConceptScore W4387131593C154945302 @default.
- W4387131593 hasConceptScore W4387131593C165801399 @default.
- W4387131593 hasConceptScore W4387131593C195324797 @default.
- W4387131593 hasConceptScore W4387131593C199360897 @default.
- W4387131593 hasConceptScore W4387131593C204321447 @default.
- W4387131593 hasConceptScore W4387131593C2781297163 @default.
- W4387131593 hasConceptScore W4387131593C28490314 @default.
- W4387131593 hasConceptScore W4387131593C40969351 @default.
- W4387131593 hasConceptScore W4387131593C41008148 @default.
- W4387131593 hasConceptScore W4387131593C41895202 @default.
- W4387131593 hasConceptScore W4387131593C57273362 @default.
- W4387131593 hasConceptScore W4387131593C62520636 @default.
- W4387131593 hasConceptScore W4387131593C66322947 @default.
- W4387131593 hasConceptScore W4387131593C76155785 @default.
- W4387131593 hasConceptScore W4387131593C98045186 @default.
- W4387131593 hasLocation W43871315931 @default.
- W4387131593 hasOpenAccess W4387131593 @default.
- W4387131593 hasPrimaryLocation W43871315931 @default.
- W4387131593 hasRelatedWork W189068596 @default.
- W4387131593 hasRelatedWork W1941015899 @default.
- W4387131593 hasRelatedWork W1989705153 @default.
- W4387131593 hasRelatedWork W2047094413 @default.
- W4387131593 hasRelatedWork W2100336732 @default.
- W4387131593 hasRelatedWork W2293457016 @default.
- W4387131593 hasRelatedWork W3005895185 @default.
- W4387131593 hasRelatedWork W3080136773 @default.
- W4387131593 hasRelatedWork W62743518 @default.
- W4387131593 hasRelatedWork W1872130062 @default.
- W4387131593 isParatext "false" @default.
- W4387131593 isRetracted "false" @default.
- W4387131593 workType "book-chapter" @default.