Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131615> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387131615 endingPage "608" @default.
- W4387131615 startingPage "596" @default.
- W4387131615 abstract "Abbreviation detection in clinical texts is popular and significant due to its contribution to enhancing readability and shareability of electronic medical records (EMRs). Nonetheless, it is limited to low-resource languages like Vietnamese because there is no available labeled dataset for the task. More development is thus needed to handle this task on Vietnamese clinical texts. On the other hand, there are many different note types where abbreviations are generated and used by many various groups of physicians, nurses, and other stakeholders. This fact leads to the necessity of processing a wide diversity of clinical texts for abbreviation detection. At this moment, none of the existing works takes into account the context where abbreviation detection is asked for the clinical texts that belong to one note type, unfortunately with the availability of the labeled clinical texts of another note type. This challenge results in a so-called cross-note abbreviation detection task in our work. In such a context, we address this task on Vietnamese clinical texts by proposing nested semisupervised learning. Our resulting Nested-SSL method is capable of detecting abbreviations in real Vietnamese clinical texts effectively. It is based on an existing semisupervised learning method and then boosts the core semisupervised learning process by a fold-based enhancement scheme in favor of F-measure of the minority class. In the empirical evaluation with real EMRs, Nested-SSL always outperforms its base semisupervised learning method and some existing ones. Its better performance lays the foundations for effectively preprocessing Vietnamese clinical texts in other tasks on EMRs." @default.
- W4387131615 created "2023-09-29" @default.
- W4387131615 creator A5034275629 @default.
- W4387131615 creator A5048349257 @default.
- W4387131615 date "2023-01-01" @default.
- W4387131615 modified "2023-10-18" @default.
- W4387131615 title "Nested Semisupervised Learning for Cross-Note Abbreviation Detection in Vietnamese Clinical Texts" @default.
- W4387131615 cites W1835136410 @default.
- W4387131615 cites W2021825362 @default.
- W4387131615 cites W2106401878 @default.
- W4387131615 cites W2122111042 @default.
- W4387131615 cites W2133556223 @default.
- W4387131615 cites W2514033258 @default.
- W4387131615 cites W2773082444 @default.
- W4387131615 cites W2911964244 @default.
- W4387131615 cites W2921630855 @default.
- W4387131615 cites W2984353870 @default.
- W4387131615 cites W3048115203 @default.
- W4387131615 doi "https://doi.org/10.1007/978-3-031-42430-4_49" @default.
- W4387131615 hasPublicationYear "2023" @default.
- W4387131615 type Work @default.
- W4387131615 citedByCount "0" @default.
- W4387131615 crossrefType "book-chapter" @default.
- W4387131615 hasAuthorship W4387131615A5034275629 @default.
- W4387131615 hasAuthorship W4387131615A5048349257 @default.
- W4387131615 hasConcept C103621254 @default.
- W4387131615 hasConcept C119857082 @default.
- W4387131615 hasConcept C138885662 @default.
- W4387131615 hasConcept C151730666 @default.
- W4387131615 hasConcept C154945302 @default.
- W4387131615 hasConcept C162324750 @default.
- W4387131615 hasConcept C187736073 @default.
- W4387131615 hasConcept C199360897 @default.
- W4387131615 hasConcept C204321447 @default.
- W4387131615 hasConcept C23123220 @default.
- W4387131615 hasConcept C2778143727 @default.
- W4387131615 hasConcept C2779343474 @default.
- W4387131615 hasConcept C2780451532 @default.
- W4387131615 hasConcept C34736171 @default.
- W4387131615 hasConcept C41008148 @default.
- W4387131615 hasConcept C41895202 @default.
- W4387131615 hasConcept C86803240 @default.
- W4387131615 hasConceptScore W4387131615C103621254 @default.
- W4387131615 hasConceptScore W4387131615C119857082 @default.
- W4387131615 hasConceptScore W4387131615C138885662 @default.
- W4387131615 hasConceptScore W4387131615C151730666 @default.
- W4387131615 hasConceptScore W4387131615C154945302 @default.
- W4387131615 hasConceptScore W4387131615C162324750 @default.
- W4387131615 hasConceptScore W4387131615C187736073 @default.
- W4387131615 hasConceptScore W4387131615C199360897 @default.
- W4387131615 hasConceptScore W4387131615C204321447 @default.
- W4387131615 hasConceptScore W4387131615C23123220 @default.
- W4387131615 hasConceptScore W4387131615C2778143727 @default.
- W4387131615 hasConceptScore W4387131615C2779343474 @default.
- W4387131615 hasConceptScore W4387131615C2780451532 @default.
- W4387131615 hasConceptScore W4387131615C34736171 @default.
- W4387131615 hasConceptScore W4387131615C41008148 @default.
- W4387131615 hasConceptScore W4387131615C41895202 @default.
- W4387131615 hasConceptScore W4387131615C86803240 @default.
- W4387131615 hasLocation W43871316151 @default.
- W4387131615 hasOpenAccess W4387131615 @default.
- W4387131615 hasPrimaryLocation W43871316151 @default.
- W4387131615 hasRelatedWork W2081830265 @default.
- W4387131615 hasRelatedWork W210117510 @default.
- W4387131615 hasRelatedWork W2251628151 @default.
- W4387131615 hasRelatedWork W2912908151 @default.
- W4387131615 hasRelatedWork W2961085424 @default.
- W4387131615 hasRelatedWork W3046489528 @default.
- W4387131615 hasRelatedWork W3082084021 @default.
- W4387131615 hasRelatedWork W3094439224 @default.
- W4387131615 hasRelatedWork W332516154 @default.
- W4387131615 hasRelatedWork W4312140697 @default.
- W4387131615 isParatext "false" @default.
- W4387131615 isRetracted "false" @default.
- W4387131615 workType "book-chapter" @default.