Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131754> ?p ?o ?g. }
- W4387131754 endingPage "4104" @default.
- W4387131754 startingPage "4104" @default.
- W4387131754 abstract "This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations." @default.
- W4387131754 created "2023-09-29" @default.
- W4387131754 creator A5028126605 @default.
- W4387131754 creator A5050892661 @default.
- W4387131754 creator A5081142964 @default.
- W4387131754 date "2023-09-28" @default.
- W4387131754 modified "2023-10-05" @default.
- W4387131754 title "Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms" @default.
- W4387131754 cites W1693178780 @default.
- W4387131754 cites W1817561967 @default.
- W4387131754 cites W1986354062 @default.
- W4387131754 cites W1991957358 @default.
- W4387131754 cites W1995341919 @default.
- W4387131754 cites W2006345381 @default.
- W4387131754 cites W2016544456 @default.
- W4387131754 cites W2030766714 @default.
- W4387131754 cites W2066706863 @default.
- W4387131754 cites W2102636708 @default.
- W4387131754 cites W2122825543 @default.
- W4387131754 cites W2124479173 @default.
- W4387131754 cites W2148623326 @default.
- W4387131754 cites W2324734834 @default.
- W4387131754 cites W2541118606 @default.
- W4387131754 cites W2620837250 @default.
- W4387131754 cites W2759168023 @default.
- W4387131754 cites W2787894218 @default.
- W4387131754 cites W2795578121 @default.
- W4387131754 cites W2804545603 @default.
- W4387131754 cites W2883965652 @default.
- W4387131754 cites W2884803076 @default.
- W4387131754 cites W2895553377 @default.
- W4387131754 cites W2945802760 @default.
- W4387131754 cites W2952297896 @default.
- W4387131754 cites W2970063886 @default.
- W4387131754 cites W2984268961 @default.
- W4387131754 cites W2992428986 @default.
- W4387131754 cites W3012420325 @default.
- W4387131754 cites W3019082520 @default.
- W4387131754 cites W3037535674 @default.
- W4387131754 cites W3044892563 @default.
- W4387131754 cites W3091832279 @default.
- W4387131754 cites W3092489168 @default.
- W4387131754 cites W3102111601 @default.
- W4387131754 cites W3186791274 @default.
- W4387131754 cites W3192527065 @default.
- W4387131754 cites W3204938617 @default.
- W4387131754 cites W4205265371 @default.
- W4387131754 cites W4205286585 @default.
- W4387131754 cites W4211096163 @default.
- W4387131754 cites W4229376125 @default.
- W4387131754 cites W4234698323 @default.
- W4387131754 cites W4235256446 @default.
- W4387131754 cites W4239510810 @default.
- W4387131754 cites W4241395986 @default.
- W4387131754 cites W4280589899 @default.
- W4387131754 cites W4286561208 @default.
- W4387131754 cites W4286697605 @default.
- W4387131754 cites W4294541781 @default.
- W4387131754 cites W4297002497 @default.
- W4387131754 cites W4300601960 @default.
- W4387131754 cites W4376647594 @default.
- W4387131754 doi "https://doi.org/10.3390/math11194104" @default.
- W4387131754 hasPublicationYear "2023" @default.
- W4387131754 type Work @default.
- W4387131754 citedByCount "0" @default.
- W4387131754 crossrefType "journal-article" @default.
- W4387131754 hasAuthorship W4387131754A5028126605 @default.
- W4387131754 hasAuthorship W4387131754A5050892661 @default.
- W4387131754 hasAuthorship W4387131754A5081142964 @default.
- W4387131754 hasBestOaLocation W43871317541 @default.
- W4387131754 hasConcept C105795698 @default.
- W4387131754 hasConcept C11413529 @default.
- W4387131754 hasConcept C119857082 @default.
- W4387131754 hasConcept C12267149 @default.
- W4387131754 hasConcept C139945424 @default.
- W4387131754 hasConcept C154945302 @default.
- W4387131754 hasConcept C162324750 @default.
- W4387131754 hasConcept C169258074 @default.
- W4387131754 hasConcept C176217482 @default.
- W4387131754 hasConcept C17744445 @default.
- W4387131754 hasConcept C199539241 @default.
- W4387131754 hasConcept C204321447 @default.
- W4387131754 hasConcept C21547014 @default.
- W4387131754 hasConcept C27181475 @default.
- W4387131754 hasConcept C2776135515 @default.
- W4387131754 hasConcept C2776640315 @default.
- W4387131754 hasConcept C33923547 @default.
- W4387131754 hasConcept C41008148 @default.
- W4387131754 hasConcept C50644808 @default.
- W4387131754 hasConcept C52001869 @default.
- W4387131754 hasConcept C83546350 @default.
- W4387131754 hasConceptScore W4387131754C105795698 @default.
- W4387131754 hasConceptScore W4387131754C11413529 @default.
- W4387131754 hasConceptScore W4387131754C119857082 @default.
- W4387131754 hasConceptScore W4387131754C12267149 @default.
- W4387131754 hasConceptScore W4387131754C139945424 @default.
- W4387131754 hasConceptScore W4387131754C154945302 @default.
- W4387131754 hasConceptScore W4387131754C162324750 @default.