Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131818> ?p ?o ?g. }
- W4387131818 endingPage "201" @default.
- W4387131818 startingPage "201" @default.
- W4387131818 abstract "Recently, the number of vehicles on the road, especially in urban centres, has increased dramatically due to the increasing trend of individuals towards urbanisation. As a result, manual detection and recognition of vehicles (i.e., license plates and vehicle manufacturers) become an arduous task and beyond human capabilities. In this paper, we have developed a system using transfer learning-based deep learning (DL) techniques to identify Jordanian vehicles automatically. The YOLOv3 (You Only Look Once) model was re-trained using transfer learning to accomplish license plate detection, character recognition, and vehicle logo detection. In contrast, the VGG16 (Visual Geometry Group) model was re-trained to accomplish the vehicle logo recognition. To train and test these models, four datasets have been collected. The first dataset consists of 7035 Jordanian vehicle images, the second dataset consists of 7176 Jordanian license plates, and the third dataset consists of 8271 Jordanian vehicle images. These datasets have been used to train and test the YOLOv3 model for Jordanian license plate detection, character recognition, and vehicle logo detection. In comparison, the fourth dataset consists of 158,230 vehicle logo images used to train and test the VGG16 model for vehicle logo recognition. Text measures were used to evaluate the performance of our developed system. Moreover, the mean average precision (mAP) measure was used to assess the YOLOv3 model of the detection tasks (i.e., license plate detection and vehicle logo detection). For license plate detection, the precision, recall, F-measure, and mAP were 99.6%, 100%, 99.8%, and 99.9%, respectively. While for character recognition, the precision, recall, and F-measure were 100%, 99.9%, and 99.95%, respectively. The performance of the license plate recognition stage was evaluated by evaluating these two sub-stages as a sequence, where the precision, recall, and F-measure were 99.8%, 99.8%, and 99.8%, respectively. Furthermore, for vehicle logo detection, the precision, recall, F-measure, and mAP were 99%, 99.6%, 99.3%, and 99.1%, respectively, while for vehicle logo recognition, the precision, recall, and F-measure were 98%, 98%, and 98%, respectively. The performance of the vehicle logo recognition stage was evaluated by evaluating these two sub-stages as a sequence, where the precision, recall, and F-measure were 95.3%, 99.5%, and 97.4%, respectively." @default.
- W4387131818 created "2023-09-29" @default.
- W4387131818 creator A5038703776 @default.
- W4387131818 creator A5092794748 @default.
- W4387131818 date "2023-09-28" @default.
- W4387131818 modified "2023-10-18" @default.
- W4387131818 title "Automatic Jordanian License Plate Detection and Recognition System Using Deep Learning Techniques" @default.
- W4387131818 cites W1861492603 @default.
- W4387131818 cites W1979387426 @default.
- W4387131818 cites W2001391903 @default.
- W4387131818 cites W2053590082 @default.
- W4387131818 cites W2095565388 @default.
- W4387131818 cites W2123725958 @default.
- W4387131818 cites W2194775991 @default.
- W4387131818 cites W2557728737 @default.
- W4387131818 cites W2623735874 @default.
- W4387131818 cites W2743563947 @default.
- W4387131818 cites W2749798860 @default.
- W4387131818 cites W2758985595 @default.
- W4387131818 cites W2772895553 @default.
- W4387131818 cites W2784115279 @default.
- W4387131818 cites W2789350341 @default.
- W4387131818 cites W2798997884 @default.
- W4387131818 cites W2804795497 @default.
- W4387131818 cites W2886377406 @default.
- W4387131818 cites W2888935014 @default.
- W4387131818 cites W2899501166 @default.
- W4387131818 cites W2901518545 @default.
- W4387131818 cites W2904458126 @default.
- W4387131818 cites W2914721739 @default.
- W4387131818 cites W2918536291 @default.
- W4387131818 cites W2922073769 @default.
- W4387131818 cites W2937191808 @default.
- W4387131818 cites W2947156730 @default.
- W4387131818 cites W2949749214 @default.
- W4387131818 cites W2953807672 @default.
- W4387131818 cites W2954996726 @default.
- W4387131818 cites W2961944112 @default.
- W4387131818 cites W2962766617 @default.
- W4387131818 cites W2963037989 @default.
- W4387131818 cites W2965278608 @default.
- W4387131818 cites W2972224561 @default.
- W4387131818 cites W2973696262 @default.
- W4387131818 cites W2979512631 @default.
- W4387131818 cites W2987455259 @default.
- W4387131818 cites W2991290813 @default.
- W4387131818 cites W2992733631 @default.
- W4387131818 cites W2994228606 @default.
- W4387131818 cites W2995530851 @default.
- W4387131818 cites W2999575794 @default.
- W4387131818 cites W2999944276 @default.
- W4387131818 cites W3002842489 @default.
- W4387131818 cites W3002906550 @default.
- W4387131818 cites W3005576218 @default.
- W4387131818 cites W3011063099 @default.
- W4387131818 cites W3013328633 @default.
- W4387131818 cites W3013610290 @default.
- W4387131818 cites W3023939840 @default.
- W4387131818 cites W3035815437 @default.
- W4387131818 cites W3042421699 @default.
- W4387131818 cites W3043995050 @default.
- W4387131818 cites W3083461963 @default.
- W4387131818 cites W3096570766 @default.
- W4387131818 cites W3106948062 @default.
- W4387131818 cites W3130428959 @default.
- W4387131818 cites W3159927018 @default.
- W4387131818 cites W3167863790 @default.
- W4387131818 cites W4366085645 @default.
- W4387131818 cites W4380318404 @default.
- W4387131818 cites W4385269011 @default.
- W4387131818 doi "https://doi.org/10.3390/jimaging9100201" @default.
- W4387131818 hasPublicationYear "2023" @default.
- W4387131818 type Work @default.
- W4387131818 citedByCount "0" @default.
- W4387131818 crossrefType "journal-article" @default.
- W4387131818 hasAuthorship W4387131818A5038703776 @default.
- W4387131818 hasAuthorship W4387131818A5092794748 @default.
- W4387131818 hasBestOaLocation W43871318181 @default.
- W4387131818 hasConcept C108583219 @default.
- W4387131818 hasConcept C111919701 @default.
- W4387131818 hasConcept C150899416 @default.
- W4387131818 hasConcept C153180895 @default.
- W4387131818 hasConcept C154945302 @default.
- W4387131818 hasConcept C199360897 @default.
- W4387131818 hasConcept C2776151529 @default.
- W4387131818 hasConcept C2778720087 @default.
- W4387131818 hasConcept C2780560020 @default.
- W4387131818 hasConcept C31972630 @default.
- W4387131818 hasConcept C41008148 @default.
- W4387131818 hasConceptScore W4387131818C108583219 @default.
- W4387131818 hasConceptScore W4387131818C111919701 @default.
- W4387131818 hasConceptScore W4387131818C150899416 @default.
- W4387131818 hasConceptScore W4387131818C153180895 @default.
- W4387131818 hasConceptScore W4387131818C154945302 @default.
- W4387131818 hasConceptScore W4387131818C199360897 @default.
- W4387131818 hasConceptScore W4387131818C2776151529 @default.
- W4387131818 hasConceptScore W4387131818C2778720087 @default.
- W4387131818 hasConceptScore W4387131818C2780560020 @default.