Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387132174> ?p ?o ?g. }
- W4387132174 abstract "Abstract Alzheimer’s disease (AD) is the most common form of dementia. Early and accurate detection of AD is crucial to plan for disease modifying therapies that could prevent or delay the conversion to sever stages of the disease. As a chronic disease, patient’s multivariate time series data including neuroimaging, genetics, cognitive scores, and neuropsychological battery provides a complete profile about patient’s status. This data has been used to build machine learning and deep learning (DL) models for the early detection of the disease. However, these models still have limited performance and are not stable enough to be trusted in real medical settings. Literature shows that DL models outperform classical machine learning models, but ensemble learning has proven to achieve better results than standalone models. This study proposes a novel deep stacking framework which combines multiple DL models to accurately predict AD at an early stage. The study uses long short-term memory (LSTM) models as base models over patient’s multivariate time series data to learn the deep longitudinal features. Each base LSTM classifier has been optimized using the Bayesian optimizer using different feature sets. As a result, the final optimized ensembled model employed heterogeneous base models that are trained on heterogeneous data. The performance of the resulting ensemble model has been explored using a cohort of 685 patients from the University of Washington's National Alzheimer’s Coordinating Center dataset. Compared to the classical machine learning models and base LSTM classifiers, the proposed ensemble model achieves the highest testing results (i.e., 82.02, 82.25, 82.02, and 82.12 for accuracy, precision, recall, and F1-score, respectively). The resulting model enhances the performance of the state-of-the-art literature, and it could be used to build an accurate clinical decision support tool that can assist domain experts for AD progression detection." @default.
- W4387132174 created "2023-09-29" @default.
- W4387132174 creator A5023828527 @default.
- W4387132174 creator A5024367402 @default.
- W4387132174 creator A5052265483 @default.
- W4387132174 creator A5060367797 @default.
- W4387132174 creator A5079814512 @default.
- W4387132174 creator A5085849146 @default.
- W4387132174 date "2023-09-28" @default.
- W4387132174 modified "2023-10-16" @default.
- W4387132174 title "Computer aided progression detection model based on optimized deep LSTM ensemble model and the fusion of multivariate time series data" @default.
- W4387132174 cites W1965616054 @default.
- W4387132174 cites W1976480595 @default.
- W4387132174 cites W1992709597 @default.
- W4387132174 cites W2001199794 @default.
- W4387132174 cites W2038705219 @default.
- W4387132174 cites W2064675550 @default.
- W4387132174 cites W2116184737 @default.
- W4387132174 cites W2382818215 @default.
- W4387132174 cites W2413582275 @default.
- W4387132174 cites W2474271774 @default.
- W4387132174 cites W2574038793 @default.
- W4387132174 cites W2593237518 @default.
- W4387132174 cites W2760736423 @default.
- W4387132174 cites W2766859413 @default.
- W4387132174 cites W2768112290 @default.
- W4387132174 cites W2774489999 @default.
- W4387132174 cites W2777315026 @default.
- W4387132174 cites W2782718222 @default.
- W4387132174 cites W2789348411 @default.
- W4387132174 cites W2789452586 @default.
- W4387132174 cites W2792712350 @default.
- W4387132174 cites W2793664204 @default.
- W4387132174 cites W2800428573 @default.
- W4387132174 cites W2807758560 @default.
- W4387132174 cites W2808814577 @default.
- W4387132174 cites W28412257 @default.
- W4387132174 cites W2884177016 @default.
- W4387132174 cites W2886568032 @default.
- W4387132174 cites W2907148404 @default.
- W4387132174 cites W2908469802 @default.
- W4387132174 cites W2909627766 @default.
- W4387132174 cites W2912541111 @default.
- W4387132174 cites W2914209001 @default.
- W4387132174 cites W2923418412 @default.
- W4387132174 cites W2943835562 @default.
- W4387132174 cites W2947823562 @default.
- W4387132174 cites W2948126609 @default.
- W4387132174 cites W2949185485 @default.
- W4387132174 cites W2951758034 @default.
- W4387132174 cites W2968809615 @default.
- W4387132174 cites W2982021527 @default.
- W4387132174 cites W2982519074 @default.
- W4387132174 cites W2991909137 @default.
- W4387132174 cites W2998975547 @default.
- W4387132174 cites W3002097015 @default.
- W4387132174 cites W3013699712 @default.
- W4387132174 cites W3025729836 @default.
- W4387132174 cites W3031176687 @default.
- W4387132174 cites W3034151505 @default.
- W4387132174 cites W3038155884 @default.
- W4387132174 cites W3044427673 @default.
- W4387132174 cites W3047286661 @default.
- W4387132174 cites W3082062168 @default.
- W4387132174 cites W3092077324 @default.
- W4387132174 cites W3113161813 @default.
- W4387132174 cites W3113483010 @default.
- W4387132174 cites W3115069763 @default.
- W4387132174 cites W3125069671 @default.
- W4387132174 cites W3151640016 @default.
- W4387132174 cites W3162685972 @default.
- W4387132174 cites W3163616589 @default.
- W4387132174 cites W3184758801 @default.
- W4387132174 cites W3198531509 @default.
- W4387132174 cites W3204772083 @default.
- W4387132174 cites W3212684309 @default.
- W4387132174 cites W3214835977 @default.
- W4387132174 cites W3216798277 @default.
- W4387132174 cites W4207032273 @default.
- W4387132174 cites W4211028926 @default.
- W4387132174 cites W4212960252 @default.
- W4387132174 cites W4213088634 @default.
- W4387132174 cites W4214884506 @default.
- W4387132174 cites W4220862496 @default.
- W4387132174 cites W4220878282 @default.
- W4387132174 cites W4229335109 @default.
- W4387132174 cites W4240294902 @default.
- W4387132174 cites W4280512342 @default.
- W4387132174 cites W4292581577 @default.
- W4387132174 cites W4310673758 @default.
- W4387132174 cites W4360604552 @default.
- W4387132174 cites W4360985733 @default.
- W4387132174 cites W4366262984 @default.
- W4387132174 cites W4380077983 @default.
- W4387132174 doi "https://doi.org/10.1038/s41598-023-42796-6" @default.
- W4387132174 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37770490" @default.
- W4387132174 hasPublicationYear "2023" @default.
- W4387132174 type Work @default.
- W4387132174 citedByCount "0" @default.
- W4387132174 crossrefType "journal-article" @default.