Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387132582> ?p ?o ?g. }
- W4387132582 endingPage "377" @default.
- W4387132582 startingPage "362" @default.
- W4387132582 abstract "Inland and coastal waters provide key ecosystem services and are closely linked to human well-being. In this study, we propose a semi-analytical method, which can be applied to Sentinel-2 MultiSpectral Instrument (MSI) images to retrieve high spatial-resolution total suspended solids (TSS) concentration in a broad spectrum of aquatic ecosystems ranging from clear to extremely turbid waters. The presented approach has four main steps. First, the remote sensing reflectance (Rrs) at a band lacking in MSI (620 nm) is estimated through an empirical relationship from Rrs at 665 nm. Second, waters are classified into four types (clear, moderately turbid, highly turbid, and extremely turbid). Third, semi-analytical algorithms are used to estimate the particulate backscattering coefficient (bbp) at a reference band depending on the water types. Last, TSS is estimated from bbp at the reference band. Validation and comparison of the proposed method with three existing methods are performed using a simulated dataset (N = 1000), an in situ dataset collected from global inland and coastal waters (N = 1265) and satellite matchups (N = 40). Results indicate that the proposed method can improve TSS estimation and provide accurate retrievals of TSS from all three datasets, with a median absolute percentage error (MAPE) of 14.88 %, 31.50 % and 41.69 % respectively. We also present comparisons of TSS mapping between the Sentinel-3 Ocean and Land Colour Instrument (OLCI) and MSI in Lake Kasumigaura, Japan and the Tagus Estuary, Portugal. Results clearly demonstrate the advantages of using MSI for TSS monitoring in small water bodies such as rivers, river mouths and other nearshore waters. MSI can provide more detailed and realistic TSS estimates than OLCI in these water bodies. The proposed TSS estimation method was applied to MSI images to produce TSS time-series in Lake Kasumigaura, which showed good agreements with in situ and OLCI-derived TSS time-series." @default.
- W4387132582 created "2023-09-29" @default.
- W4387132582 creator A5002827886 @default.
- W4387132582 creator A5008687840 @default.
- W4387132582 creator A5010758067 @default.
- W4387132582 creator A5016004334 @default.
- W4387132582 creator A5024558222 @default.
- W4387132582 creator A5033793940 @default.
- W4387132582 creator A5042030979 @default.
- W4387132582 creator A5057736064 @default.
- W4387132582 creator A5058488448 @default.
- W4387132582 creator A5060359890 @default.
- W4387132582 creator A5060768667 @default.
- W4387132582 creator A5066543180 @default.
- W4387132582 creator A5068705409 @default.
- W4387132582 creator A5076714797 @default.
- W4387132582 creator A5078962380 @default.
- W4387132582 date "2023-10-01" @default.
- W4387132582 modified "2023-10-06" @default.
- W4387132582 title "Estimating the concentration of total suspended solids in inland and coastal waters from Sentinel-2 MSI: A semi-analytical approach" @default.
- W4387132582 cites W1817841038 @default.
- W4387132582 cites W1967906870 @default.
- W4387132582 cites W1994196893 @default.
- W4387132582 cites W1995811252 @default.
- W4387132582 cites W1996974344 @default.
- W4387132582 cites W2015268693 @default.
- W4387132582 cites W2026440158 @default.
- W4387132582 cites W2031834154 @default.
- W4387132582 cites W2043728386 @default.
- W4387132582 cites W2048956808 @default.
- W4387132582 cites W2050358717 @default.
- W4387132582 cites W2056435747 @default.
- W4387132582 cites W2057646508 @default.
- W4387132582 cites W2078860594 @default.
- W4387132582 cites W2082714424 @default.
- W4387132582 cites W2091849042 @default.
- W4387132582 cites W2117571129 @default.
- W4387132582 cites W2155782014 @default.
- W4387132582 cites W2222293850 @default.
- W4387132582 cites W2273225371 @default.
- W4387132582 cites W2289865770 @default.
- W4387132582 cites W2572463531 @default.
- W4387132582 cites W2597944323 @default.
- W4387132582 cites W2600916932 @default.
- W4387132582 cites W2605367565 @default.
- W4387132582 cites W2738308406 @default.
- W4387132582 cites W2750497991 @default.
- W4387132582 cites W2751239848 @default.
- W4387132582 cites W2903780661 @default.
- W4387132582 cites W2912045527 @default.
- W4387132582 cites W2921674639 @default.
- W4387132582 cites W2928164210 @default.
- W4387132582 cites W2938079525 @default.
- W4387132582 cites W2945291386 @default.
- W4387132582 cites W2968460417 @default.
- W4387132582 cites W2990498406 @default.
- W4387132582 cites W3010208110 @default.
- W4387132582 cites W3025417591 @default.
- W4387132582 cites W3027958853 @default.
- W4387132582 cites W3037079185 @default.
- W4387132582 cites W3040183518 @default.
- W4387132582 cites W3082194594 @default.
- W4387132582 cites W3138775503 @default.
- W4387132582 cites W3193815278 @default.
- W4387132582 cites W4210800473 @default.
- W4387132582 cites W4283654628 @default.
- W4387132582 cites W842886668 @default.
- W4387132582 doi "https://doi.org/10.1016/j.isprsjprs.2023.09.020" @default.
- W4387132582 hasPublicationYear "2023" @default.
- W4387132582 type Work @default.
- W4387132582 citedByCount "0" @default.
- W4387132582 crossrefType "journal-article" @default.
- W4387132582 hasAuthorship W4387132582A5002827886 @default.
- W4387132582 hasAuthorship W4387132582A5008687840 @default.
- W4387132582 hasAuthorship W4387132582A5010758067 @default.
- W4387132582 hasAuthorship W4387132582A5016004334 @default.
- W4387132582 hasAuthorship W4387132582A5024558222 @default.
- W4387132582 hasAuthorship W4387132582A5033793940 @default.
- W4387132582 hasAuthorship W4387132582A5042030979 @default.
- W4387132582 hasAuthorship W4387132582A5057736064 @default.
- W4387132582 hasAuthorship W4387132582A5058488448 @default.
- W4387132582 hasAuthorship W4387132582A5060359890 @default.
- W4387132582 hasAuthorship W4387132582A5060768667 @default.
- W4387132582 hasAuthorship W4387132582A5066543180 @default.
- W4387132582 hasAuthorship W4387132582A5068705409 @default.
- W4387132582 hasAuthorship W4387132582A5076714797 @default.
- W4387132582 hasAuthorship W4387132582A5078962380 @default.
- W4387132582 hasBestOaLocation W43871325821 @default.
- W4387132582 hasConcept C111368507 @default.
- W4387132582 hasConcept C127313418 @default.
- W4387132582 hasConcept C127413603 @default.
- W4387132582 hasConcept C146978453 @default.
- W4387132582 hasConcept C173163844 @default.
- W4387132582 hasConcept C175327387 @default.
- W4387132582 hasConcept C187320778 @default.
- W4387132582 hasConcept C188287460 @default.
- W4387132582 hasConcept C19269812 @default.
- W4387132582 hasConcept C39432304 @default.