Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387133420> ?p ?o ?g. }
- W4387133420 endingPage "1887" @default.
- W4387133420 startingPage "1887" @default.
- W4387133420 abstract "Microwave radiometers are passive remote sensing devices that are widely used in marine atmospheric observations. The accuracy of its inversion of temperature and humidity profiles is an important indicator of its performance. Back Propagation (BP) neural networks are widely used in the study of microwave radiometer inversion problems. However, the BP network which is carried by the radiometer inversion suffers from profile data collapse. To address this, this study introduced a residual network to improve the accuracy of water vapor vertical profiles. Aiming at the problem of large inversion temperature error due to the effect of turbulence on the light-travel phase induced by stationary fronts along the seashore in the subtropical monsoon climate region, we used historical data to establish the seasonal a priori mean profile and design a dead-zone residual adjustment model. The accuracy of the residual network and the deadband-adjusted residual network was verified using the meteorological records of the Taizhou region from 2013–2018, with the experimental data and BP hierarchical network as the comparison term. We found no data collapse in the temperature and humidity profile inversion results of the residual network. Relative to the initial BP hierarchical algorithm, where the error of water vapor in the range 6–10 km was reduced by 80%, the dead zone residual adjustment model in the inverse-temperature phenomenon reduced the sum of squares error by 21%, compared with the ordinary residual network inversion results. Our findings provide new insights into the accuracy improvement of radiometer remote sensing." @default.
- W4387133420 created "2023-09-29" @default.
- W4387133420 creator A5020865309 @default.
- W4387133420 creator A5031304700 @default.
- W4387133420 creator A5064298521 @default.
- W4387133420 creator A5082236554 @default.
- W4387133420 creator A5082779628 @default.
- W4387133420 date "2023-09-28" @default.
- W4387133420 modified "2023-10-18" @default.
- W4387133420 title "A Microwave Radiometer Residual Inversion Neural Network Based on a Deadband Conditioning Model" @default.
- W4387133420 cites W1631722621 @default.
- W4387133420 cites W1977338665 @default.
- W4387133420 cites W2047576405 @default.
- W4387133420 cites W2092805004 @default.
- W4387133420 cites W2097973425 @default.
- W4387133420 cites W2585944404 @default.
- W4387133420 cites W2589174422 @default.
- W4387133420 cites W2609560042 @default.
- W4387133420 cites W2790656430 @default.
- W4387133420 cites W2805785807 @default.
- W4387133420 cites W2810586242 @default.
- W4387133420 cites W2892063113 @default.
- W4387133420 cites W2893216376 @default.
- W4387133420 cites W2898636320 @default.
- W4387133420 cites W2972411871 @default.
- W4387133420 cites W3010773441 @default.
- W4387133420 cites W3022221512 @default.
- W4387133420 cites W3127888577 @default.
- W4387133420 cites W3145323629 @default.
- W4387133420 cites W3200988093 @default.
- W4387133420 cites W4289843936 @default.
- W4387133420 cites W4291734206 @default.
- W4387133420 cites W4292158259 @default.
- W4387133420 cites W4292553444 @default.
- W4387133420 cites W4296906257 @default.
- W4387133420 cites W4306180873 @default.
- W4387133420 cites W4306411239 @default.
- W4387133420 cites W4309719552 @default.
- W4387133420 cites W4309879870 @default.
- W4387133420 cites W4310379517 @default.
- W4387133420 cites W4311089677 @default.
- W4387133420 cites W4311143814 @default.
- W4387133420 cites W4311270900 @default.
- W4387133420 cites W4311530089 @default.
- W4387133420 cites W4312143441 @default.
- W4387133420 cites W4312183654 @default.
- W4387133420 cites W4312223651 @default.
- W4387133420 cites W4313256412 @default.
- W4387133420 cites W4313459863 @default.
- W4387133420 doi "https://doi.org/10.3390/jmse11101887" @default.
- W4387133420 hasPublicationYear "2023" @default.
- W4387133420 type Work @default.
- W4387133420 citedByCount "0" @default.
- W4387133420 crossrefType "journal-article" @default.
- W4387133420 hasAuthorship W4387133420A5020865309 @default.
- W4387133420 hasAuthorship W4387133420A5031304700 @default.
- W4387133420 hasAuthorship W4387133420A5064298521 @default.
- W4387133420 hasAuthorship W4387133420A5082236554 @default.
- W4387133420 hasAuthorship W4387133420A5082779628 @default.
- W4387133420 hasBestOaLocation W43871334201 @default.
- W4387133420 hasConcept C109007969 @default.
- W4387133420 hasConcept C111472728 @default.
- W4387133420 hasConcept C11413529 @default.
- W4387133420 hasConcept C120189094 @default.
- W4387133420 hasConcept C127313418 @default.
- W4387133420 hasConcept C138885662 @default.
- W4387133420 hasConcept C143606050 @default.
- W4387133420 hasConcept C147534773 @default.
- W4387133420 hasConcept C151730666 @default.
- W4387133420 hasConcept C153294291 @default.
- W4387133420 hasConcept C154945302 @default.
- W4387133420 hasConcept C155512373 @default.
- W4387133420 hasConcept C167928553 @default.
- W4387133420 hasConcept C1893757 @default.
- W4387133420 hasConcept C205649164 @default.
- W4387133420 hasConcept C2779345167 @default.
- W4387133420 hasConcept C39432304 @default.
- W4387133420 hasConcept C41008148 @default.
- W4387133420 hasConcept C44838205 @default.
- W4387133420 hasConcept C45923927 @default.
- W4387133420 hasConcept C49392186 @default.
- W4387133420 hasConcept C50644808 @default.
- W4387133420 hasConcept C62649853 @default.
- W4387133420 hasConcept C75553542 @default.
- W4387133420 hasConcept C76155785 @default.
- W4387133420 hasConcept C96960616 @default.
- W4387133420 hasConceptScore W4387133420C109007969 @default.
- W4387133420 hasConceptScore W4387133420C111472728 @default.
- W4387133420 hasConceptScore W4387133420C11413529 @default.
- W4387133420 hasConceptScore W4387133420C120189094 @default.
- W4387133420 hasConceptScore W4387133420C127313418 @default.
- W4387133420 hasConceptScore W4387133420C138885662 @default.
- W4387133420 hasConceptScore W4387133420C143606050 @default.
- W4387133420 hasConceptScore W4387133420C147534773 @default.
- W4387133420 hasConceptScore W4387133420C151730666 @default.
- W4387133420 hasConceptScore W4387133420C153294291 @default.
- W4387133420 hasConceptScore W4387133420C154945302 @default.
- W4387133420 hasConceptScore W4387133420C155512373 @default.