Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387138811> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4387138811 endingPage "19" @default.
- W4387138811 startingPage "3" @default.
- W4387138811 abstract "Residual-feedback artificial neural networks are a type of artificial neural network (ANNs) that have shown better forecasting performance on some time series. One of the challenges of residual-feedback ANNs is by utilizing the previous time step’s observed value, they are only capable of predicting one step ahead in advance. Therefore, it would not be possible to apply them directly in a recursive multi-step forecast strategy. To shed light on this challenge, a systematic literature review was conducted in this paper to find answers to the following three research questions: What are the main motivations behind introducing residual feedback to ANNs? How good are the existing residual-feedback ANNs compared to other forecasting methods in terms of forecasting performance? And what are the existing solutions for recursive multi-step time series forecasting using residual-feedback ANNs? An analysis of 19 studies was conducted to answer these questions. Furthermore, several potential solutions that can be further practically explored are suggested in an attempt to overcome this challenge." @default.
- W4387138811 created "2023-09-29" @default.
- W4387138811 creator A5011466065 @default.
- W4387138811 creator A5069402415 @default.
- W4387138811 date "2023-01-01" @default.
- W4387138811 modified "2023-10-18" @default.
- W4387138811 title "Recursive Multi-step Time-Series Forecasting for Residual-Feedback Artificial Neural Networks: A Survey" @default.
- W4387138811 cites W1643663407 @default.
- W4387138811 cites W1966924115 @default.
- W4387138811 cites W1967012580 @default.
- W4387138811 cites W1975936518 @default.
- W4387138811 cites W1995474051 @default.
- W4387138811 cites W2003466743 @default.
- W4387138811 cites W2026956335 @default.
- W4387138811 cites W2087632795 @default.
- W4387138811 cites W2108298905 @default.
- W4387138811 cites W2110242546 @default.
- W4387138811 cites W2120585179 @default.
- W4387138811 cites W2126966204 @default.
- W4387138811 cites W2158129352 @default.
- W4387138811 cites W2519944701 @default.
- W4387138811 cites W2564768568 @default.
- W4387138811 cites W2766910252 @default.
- W4387138811 cites W2946438382 @default.
- W4387138811 cites W2946942723 @default.
- W4387138811 cites W2967627686 @default.
- W4387138811 cites W2972733886 @default.
- W4387138811 cites W3014797134 @default.
- W4387138811 cites W3106321705 @default.
- W4387138811 cites W3110276267 @default.
- W4387138811 cites W3211639647 @default.
- W4387138811 cites W4318715053 @default.
- W4387138811 cites W4379474919 @default.
- W4387138811 cites W60784745 @default.
- W4387138811 doi "https://doi.org/10.1007/978-3-031-40688-1_1" @default.
- W4387138811 hasPublicationYear "2023" @default.
- W4387138811 type Work @default.
- W4387138811 citedByCount "0" @default.
- W4387138811 crossrefType "book-chapter" @default.
- W4387138811 hasAuthorship W4387138811A5011466065 @default.
- W4387138811 hasAuthorship W4387138811A5069402415 @default.
- W4387138811 hasConcept C11413529 @default.
- W4387138811 hasConcept C119857082 @default.
- W4387138811 hasConcept C143724316 @default.
- W4387138811 hasConcept C151406439 @default.
- W4387138811 hasConcept C151730666 @default.
- W4387138811 hasConcept C154945302 @default.
- W4387138811 hasConcept C155512373 @default.
- W4387138811 hasConcept C41008148 @default.
- W4387138811 hasConcept C50644808 @default.
- W4387138811 hasConcept C86803240 @default.
- W4387138811 hasConceptScore W4387138811C11413529 @default.
- W4387138811 hasConceptScore W4387138811C119857082 @default.
- W4387138811 hasConceptScore W4387138811C143724316 @default.
- W4387138811 hasConceptScore W4387138811C151406439 @default.
- W4387138811 hasConceptScore W4387138811C151730666 @default.
- W4387138811 hasConceptScore W4387138811C154945302 @default.
- W4387138811 hasConceptScore W4387138811C155512373 @default.
- W4387138811 hasConceptScore W4387138811C41008148 @default.
- W4387138811 hasConceptScore W4387138811C50644808 @default.
- W4387138811 hasConceptScore W4387138811C86803240 @default.
- W4387138811 hasLocation W43871388111 @default.
- W4387138811 hasOpenAccess W4387138811 @default.
- W4387138811 hasPrimaryLocation W43871388111 @default.
- W4387138811 hasRelatedWork W2150809741 @default.
- W4387138811 hasRelatedWork W2242271381 @default.
- W4387138811 hasRelatedWork W2357809648 @default.
- W4387138811 hasRelatedWork W2378555542 @default.
- W4387138811 hasRelatedWork W2381421930 @default.
- W4387138811 hasRelatedWork W2961085424 @default.
- W4387138811 hasRelatedWork W2990514669 @default.
- W4387138811 hasRelatedWork W4306674287 @default.
- W4387138811 hasRelatedWork W2393723963 @default.
- W4387138811 hasRelatedWork W4224009465 @default.
- W4387138811 isParatext "false" @default.
- W4387138811 isRetracted "false" @default.
- W4387138811 workType "book-chapter" @default.