Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387140346> ?p ?o ?g. }
- W4387140346 endingPage "10786" @default.
- W4387140346 startingPage "10786" @default.
- W4387140346 abstract "Modern machine learning methods were used to automate and improve the determination of an effective quality index for coffee beans. Machine learning algorithms can effectively recognize various anomalies, among others factors, occurring in a food product. The procedure for preparing the machine learning algorithm depends on the correct preparation and preprocessing of the learning set. The set contained coded information (i.e., selected quality coefficients) based on digital photos (input data) and a specific class of coffee bean (output data). Because of training and data tuning, an adequate convolutional neural network (CNN) was obtained, which was characterized by a high recognition rate of these coffee beans at the level of 0.81 for the test set. Statistical analysis was performed on the color data in the RGB color space model, which made it possible to accurately distinguish three distinct categories of coffee beans. However, using the Lab* color model, it became apparent that distinguishing between the quality categories of under-roasted and properly roasted coffee beans was a major challenge. Nevertheless, the Lab* model successfully distinguished the category of over-roasted coffee beans." @default.
- W4387140346 created "2023-09-29" @default.
- W4387140346 creator A5018720400 @default.
- W4387140346 creator A5020114602 @default.
- W4387140346 creator A5039594931 @default.
- W4387140346 creator A5041875326 @default.
- W4387140346 creator A5053600351 @default.
- W4387140346 creator A5071603634 @default.
- W4387140346 creator A5076896351 @default.
- W4387140346 date "2023-09-28" @default.
- W4387140346 modified "2023-10-18" @default.
- W4387140346 title "Application of Machine Learning to Assess the Quality of Food Products—Case Study: Coffee Bean" @default.
- W4387140346 cites W1869362176 @default.
- W4387140346 cites W1875461343 @default.
- W4387140346 cites W2015159529 @default.
- W4387140346 cites W2053210088 @default.
- W4387140346 cites W2145334223 @default.
- W4387140346 cites W2150792183 @default.
- W4387140346 cites W2492133633 @default.
- W4387140346 cites W2509411710 @default.
- W4387140346 cites W2605131570 @default.
- W4387140346 cites W2625389021 @default.
- W4387140346 cites W2765888665 @default.
- W4387140346 cites W2790000598 @default.
- W4387140346 cites W2791181479 @default.
- W4387140346 cites W2791291745 @default.
- W4387140346 cites W2800513489 @default.
- W4387140346 cites W2903298154 @default.
- W4387140346 cites W2945039903 @default.
- W4387140346 cites W2963698657 @default.
- W4387140346 cites W2988998058 @default.
- W4387140346 cites W3014988774 @default.
- W4387140346 cites W3030752403 @default.
- W4387140346 cites W3090728869 @default.
- W4387140346 cites W3092486488 @default.
- W4387140346 cites W3100908613 @default.
- W4387140346 cites W3110651891 @default.
- W4387140346 cites W3123096349 @default.
- W4387140346 cites W3156842096 @default.
- W4387140346 cites W3174472917 @default.
- W4387140346 cites W3189831819 @default.
- W4387140346 cites W3194368700 @default.
- W4387140346 cites W3194730353 @default.
- W4387140346 cites W3196410351 @default.
- W4387140346 cites W3213942145 @default.
- W4387140346 cites W3217490141 @default.
- W4387140346 cites W4210664148 @default.
- W4387140346 cites W4245773234 @default.
- W4387140346 cites W4247615697 @default.
- W4387140346 cites W4282979317 @default.
- W4387140346 cites W4288445096 @default.
- W4387140346 cites W4288753986 @default.
- W4387140346 cites W4292258857 @default.
- W4387140346 cites W4296998462 @default.
- W4387140346 cites W4311533661 @default.
- W4387140346 cites W4327951283 @default.
- W4387140346 cites W4379472758 @default.
- W4387140346 cites W4381597685 @default.
- W4387140346 cites W4385708793 @default.
- W4387140346 cites W4385987249 @default.
- W4387140346 doi "https://doi.org/10.3390/app131910786" @default.
- W4387140346 hasPublicationYear "2023" @default.
- W4387140346 type Work @default.
- W4387140346 citedByCount "0" @default.
- W4387140346 crossrefType "journal-article" @default.
- W4387140346 hasAuthorship W4387140346A5018720400 @default.
- W4387140346 hasAuthorship W4387140346A5020114602 @default.
- W4387140346 hasAuthorship W4387140346A5039594931 @default.
- W4387140346 hasAuthorship W4387140346A5041875326 @default.
- W4387140346 hasAuthorship W4387140346A5053600351 @default.
- W4387140346 hasAuthorship W4387140346A5071603634 @default.
- W4387140346 hasAuthorship W4387140346A5076896351 @default.
- W4387140346 hasBestOaLocation W43871403461 @default.
- W4387140346 hasConcept C111472728 @default.
- W4387140346 hasConcept C119857082 @default.
- W4387140346 hasConcept C138885662 @default.
- W4387140346 hasConcept C153180895 @default.
- W4387140346 hasConcept C154945302 @default.
- W4387140346 hasConcept C185592680 @default.
- W4387140346 hasConcept C2524010 @default.
- W4387140346 hasConcept C2779530757 @default.
- W4387140346 hasConcept C2993527415 @default.
- W4387140346 hasConcept C31903555 @default.
- W4387140346 hasConcept C33923547 @default.
- W4387140346 hasConcept C41008148 @default.
- W4387140346 hasConcept C82990744 @default.
- W4387140346 hasConcept C90673727 @default.
- W4387140346 hasConceptScore W4387140346C111472728 @default.
- W4387140346 hasConceptScore W4387140346C119857082 @default.
- W4387140346 hasConceptScore W4387140346C138885662 @default.
- W4387140346 hasConceptScore W4387140346C153180895 @default.
- W4387140346 hasConceptScore W4387140346C154945302 @default.
- W4387140346 hasConceptScore W4387140346C185592680 @default.
- W4387140346 hasConceptScore W4387140346C2524010 @default.
- W4387140346 hasConceptScore W4387140346C2779530757 @default.
- W4387140346 hasConceptScore W4387140346C2993527415 @default.
- W4387140346 hasConceptScore W4387140346C31903555 @default.
- W4387140346 hasConceptScore W4387140346C33923547 @default.