Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387140614> ?p ?o ?g. }
- W4387140614 abstract "The identification and localization of tea picking points is a prerequisite for achieving automatic picking of famous tea. However, due to the similarity in color between tea buds and young leaves and old leaves, it is difficult for the human eye to accurately identify them.To address the problem of segmentation, detection, and localization of tea picking points in the complex environment of mechanical picking of famous tea, this paper proposes a new model called the MDY7-3PTB model, which combines the high-precision segmentation capability of DeepLabv3+ and the rapid detection capability of YOLOv7. This model achieves the process of segmentation first, followed by detection and finally localization of tea buds, resulting in accurate identification of the tea bud picking point. This model replaced the DeepLabv3+ feature extraction network with the more lightweight MobileNetV2 network to improve the model computation speed. In addition, multiple attention mechanisms (CBAM) were fused into the feature extraction and ASPP modules to further optimize model performance. Moreover, to address the problem of class imbalance in the dataset, the Focal Loss function was used to correct data imbalance and improve segmentation, detection, and positioning accuracy.The MDY7-3PTB model achieved a mean intersection over union (mIoU) of 86.61%, a mean pixel accuracy (mPA) of 93.01%, and a mean recall (mRecall) of 91.78% on the tea bud segmentation dataset, which performed better than usual segmentation models such as PSPNet, Unet, and DeeplabV3+. In terms of tea bud picking point recognition and positioning, the model achieved a mean average precision (mAP) of 93.52%, a weighted average of precision and recall (F1 score) of 93.17%, a precision of 97.27%, and a recall of 89.41%. This model showed significant improvements in all aspects compared to existing mainstream YOLO series detection models, with strong versatility and robustness. This method eliminates the influence of the background and directly detects the tea bud picking points with almost no missed detections, providing accurate two-dimensional coordinates for the tea bud picking points, with a positioning precision of 96.41%. This provides a strong theoretical basis for future tea bud picking." @default.
- W4387140614 created "2023-09-29" @default.
- W4387140614 creator A5007946395 @default.
- W4387140614 creator A5026265793 @default.
- W4387140614 creator A5045825493 @default.
- W4387140614 creator A5046353517 @default.
- W4387140614 creator A5051109131 @default.
- W4387140614 creator A5052547773 @default.
- W4387140614 creator A5057886296 @default.
- W4387140614 creator A5082125161 @default.
- W4387140614 date "2023-09-28" @default.
- W4387140614 modified "2023-10-18" @default.
- W4387140614 title "A tea bud segmentation, detection and picking point localization based on the MDY7-3PTB model" @default.
- W4387140614 cites W1986707004 @default.
- W4387140614 cites W2039682376 @default.
- W4387140614 cites W2748937207 @default.
- W4387140614 cites W2781072509 @default.
- W4387140614 cites W2885198342 @default.
- W4387140614 cites W2911187395 @default.
- W4387140614 cites W2925449641 @default.
- W4387140614 cites W2945386048 @default.
- W4387140614 cites W2980793762 @default.
- W4387140614 cites W2998301879 @default.
- W4387140614 cites W3122219820 @default.
- W4387140614 cites W3128063854 @default.
- W4387140614 cites W3152497781 @default.
- W4387140614 cites W3155346876 @default.
- W4387140614 cites W3173780596 @default.
- W4387140614 cites W3214752088 @default.
- W4387140614 cites W4200401735 @default.
- W4387140614 cites W4205684145 @default.
- W4387140614 cites W4281728915 @default.
- W4387140614 cites W4284881729 @default.
- W4387140614 cites W4288067336 @default.
- W4387140614 cites W4290839394 @default.
- W4387140614 cites W4293584584 @default.
- W4387140614 cites W4293744159 @default.
- W4387140614 cites W4303968612 @default.
- W4387140614 cites W4304128598 @default.
- W4387140614 cites W4308527059 @default.
- W4387140614 cites W4309185509 @default.
- W4387140614 cites W4309680620 @default.
- W4387140614 cites W4311522588 @default.
- W4387140614 cites W4312187461 @default.
- W4387140614 cites W4317486508 @default.
- W4387140614 cites W4320487943 @default.
- W4387140614 cites W4321458585 @default.
- W4387140614 cites W4321496090 @default.
- W4387140614 cites W4323362749 @default.
- W4387140614 cites W4379052949 @default.
- W4387140614 cites W4380051279 @default.
- W4387140614 doi "https://doi.org/10.3389/fpls.2023.1199473" @default.
- W4387140614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37841621" @default.
- W4387140614 hasPublicationYear "2023" @default.
- W4387140614 type Work @default.
- W4387140614 citedByCount "0" @default.
- W4387140614 crossrefType "journal-article" @default.
- W4387140614 hasAuthorship W4387140614A5007946395 @default.
- W4387140614 hasAuthorship W4387140614A5026265793 @default.
- W4387140614 hasAuthorship W4387140614A5045825493 @default.
- W4387140614 hasAuthorship W4387140614A5046353517 @default.
- W4387140614 hasAuthorship W4387140614A5051109131 @default.
- W4387140614 hasAuthorship W4387140614A5052547773 @default.
- W4387140614 hasAuthorship W4387140614A5057886296 @default.
- W4387140614 hasAuthorship W4387140614A5082125161 @default.
- W4387140614 hasBestOaLocation W43871406141 @default.
- W4387140614 hasConcept C103278499 @default.
- W4387140614 hasConcept C115961682 @default.
- W4387140614 hasConcept C116834253 @default.
- W4387140614 hasConcept C138885662 @default.
- W4387140614 hasConcept C153180895 @default.
- W4387140614 hasConcept C154945302 @default.
- W4387140614 hasConcept C160633673 @default.
- W4387140614 hasConcept C205649164 @default.
- W4387140614 hasConcept C2524010 @default.
- W4387140614 hasConcept C2776401178 @default.
- W4387140614 hasConcept C28719098 @default.
- W4387140614 hasConcept C31972630 @default.
- W4387140614 hasConcept C33923547 @default.
- W4387140614 hasConcept C41008148 @default.
- W4387140614 hasConcept C41895202 @default.
- W4387140614 hasConcept C58640448 @default.
- W4387140614 hasConcept C59822182 @default.
- W4387140614 hasConcept C64543145 @default.
- W4387140614 hasConcept C81669768 @default.
- W4387140614 hasConcept C86803240 @default.
- W4387140614 hasConcept C89600930 @default.
- W4387140614 hasConceptScore W4387140614C103278499 @default.
- W4387140614 hasConceptScore W4387140614C115961682 @default.
- W4387140614 hasConceptScore W4387140614C116834253 @default.
- W4387140614 hasConceptScore W4387140614C138885662 @default.
- W4387140614 hasConceptScore W4387140614C153180895 @default.
- W4387140614 hasConceptScore W4387140614C154945302 @default.
- W4387140614 hasConceptScore W4387140614C160633673 @default.
- W4387140614 hasConceptScore W4387140614C205649164 @default.
- W4387140614 hasConceptScore W4387140614C2524010 @default.
- W4387140614 hasConceptScore W4387140614C2776401178 @default.
- W4387140614 hasConceptScore W4387140614C28719098 @default.
- W4387140614 hasConceptScore W4387140614C31972630 @default.
- W4387140614 hasConceptScore W4387140614C33923547 @default.