Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387142757> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4387142757 endingPage "117244" @default.
- W4387142757 startingPage "117244" @default.
- W4387142757 abstract "Traditional Chinese medicine (TCM) meridian is the key theoretical guidance of prescription against tumor in clinical practice. However, there is no scientific and systematic verification of therapeutic action of herbs under meridians context. Several studies have determined the Chinese herbal medicine (CHM) phytochemicals for intrinsic attribute or meridians classification based on artificial intelligence (AI) tools. However, it is challenging to represent the complex molecular structures with large heterogeneity through the current technologies. In addition, the multiple correspondence between herbs and meridians has not been paid much attention. We aim to develop an AI framework to classify multi-target meridians through the topological structure of phytochemicals. A total of 354 anti-cancer herbs, their corresponding TCM meridians and 5471 ingredient compounds were collected from public databases of CancerHSP, ETCM, and Hit 2.0. The statistical analysis of herbal and compound datasets, clustering analysis of the associated cancers, and correlational analysis of meridian tropism were preliminary conducted. Then a deep learning (DL) hybrid model named GRMC consisting of graph convolutional network (GCN) and recurrent neural network (RNN) was employed to generate the meridian multi-label sequences based on molecular graph. The curing herbs against tumors have tight relationships to lung, liver, stomach, and spleen meridians. These herbs behave different properties in curing certain cancer. Certain cancer types have co-occurrence such as ovarian, bladder and cervical cancer. Compounds have multitarget meridians with characteristics of higher-order correlations. Compared with the other state-of-the-art algorithms on the datasets and previous methods dealing with conventional fixed fingerprints of herbal compounds, the proposed GRMC has superior overall performance on testing dataset with the one error of 0.183, hamming loss of 0.112, mean averaged accuracy (MAA) of 0.855, mean averaged precision (MAP) of 0.891, mean averaged recall (MAR) of 0.812, and mean averaged F1 score (MAF) of 0.849. The proposed method can predict multi-targeted meridians through neural graph features in herbal compounds and outperforms several comparison methods. It could provide a basis for understanding the molecular scientific evidence of TCM meridians." @default.
- W4387142757 created "2023-09-29" @default.
- W4387142757 creator A5011579671 @default.
- W4387142757 creator A5042161074 @default.
- W4387142757 creator A5043023473 @default.
- W4387142757 creator A5045041919 @default.
- W4387142757 creator A5077611123 @default.
- W4387142757 date "2024-01-01" @default.
- W4387142757 modified "2023-10-07" @default.
- W4387142757 title "Multi-target meridians classification based on the topological structure of anti-cancer phytochemicals using deep learning" @default.
- W4387142757 cites W1980662541 @default.
- W4387142757 cites W2074818019 @default.
- W4387142757 cites W2094848474 @default.
- W4387142757 cites W2141935892 @default.
- W4387142757 cites W2213443318 @default.
- W4387142757 cites W2231278179 @default.
- W4387142757 cites W2259683034 @default.
- W4387142757 cites W2592286896 @default.
- W4387142757 cites W2594183968 @default.
- W4387142757 cites W2617137613 @default.
- W4387142757 cites W2625653297 @default.
- W4387142757 cites W2754768508 @default.
- W4387142757 cites W2783323081 @default.
- W4387142757 cites W2788577764 @default.
- W4387142757 cites W2860192827 @default.
- W4387142757 cites W2884982138 @default.
- W4387142757 cites W2898468989 @default.
- W4387142757 cites W2905418122 @default.
- W4387142757 cites W2913099012 @default.
- W4387142757 cites W2928431398 @default.
- W4387142757 cites W2984497827 @default.
- W4387142757 cites W2990378985 @default.
- W4387142757 cites W3002570002 @default.
- W4387142757 cites W3036790206 @default.
- W4387142757 cites W3076253970 @default.
- W4387142757 cites W3082969464 @default.
- W4387142757 cites W3121356850 @default.
- W4387142757 cites W3153808463 @default.
- W4387142757 cites W3183592968 @default.
- W4387142757 cites W4205519906 @default.
- W4387142757 cites W4210257598 @default.
- W4387142757 cites W4226040090 @default.
- W4387142757 cites W4280495093 @default.
- W4387142757 cites W608794511 @default.
- W4387142757 doi "https://doi.org/10.1016/j.jep.2023.117244" @default.
- W4387142757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37777031" @default.
- W4387142757 hasPublicationYear "2024" @default.
- W4387142757 type Work @default.
- W4387142757 citedByCount "0" @default.
- W4387142757 crossrefType "journal-article" @default.
- W4387142757 hasAuthorship W4387142757A5011579671 @default.
- W4387142757 hasAuthorship W4387142757A5042161074 @default.
- W4387142757 hasAuthorship W4387142757A5043023473 @default.
- W4387142757 hasAuthorship W4387142757A5045041919 @default.
- W4387142757 hasAuthorship W4387142757A5077611123 @default.
- W4387142757 hasConcept C108583219 @default.
- W4387142757 hasConcept C142724271 @default.
- W4387142757 hasConcept C154945302 @default.
- W4387142757 hasConcept C188947578 @default.
- W4387142757 hasConcept C204787440 @default.
- W4387142757 hasConcept C41008148 @default.
- W4387142757 hasConcept C556039675 @default.
- W4387142757 hasConcept C71924100 @default.
- W4387142757 hasConcept C81363708 @default.
- W4387142757 hasConceptScore W4387142757C108583219 @default.
- W4387142757 hasConceptScore W4387142757C142724271 @default.
- W4387142757 hasConceptScore W4387142757C154945302 @default.
- W4387142757 hasConceptScore W4387142757C188947578 @default.
- W4387142757 hasConceptScore W4387142757C204787440 @default.
- W4387142757 hasConceptScore W4387142757C41008148 @default.
- W4387142757 hasConceptScore W4387142757C556039675 @default.
- W4387142757 hasConceptScore W4387142757C71924100 @default.
- W4387142757 hasConceptScore W4387142757C81363708 @default.
- W4387142757 hasFunder F4320321135 @default.
- W4387142757 hasFunder F4320330194 @default.
- W4387142757 hasLocation W43871427571 @default.
- W4387142757 hasLocation W43871427572 @default.
- W4387142757 hasOpenAccess W4387142757 @default.
- W4387142757 hasPrimaryLocation W43871427571 @default.
- W4387142757 hasRelatedWork W2731899572 @default.
- W4387142757 hasRelatedWork W2939353110 @default.
- W4387142757 hasRelatedWork W3009238340 @default.
- W4387142757 hasRelatedWork W3133861977 @default.
- W4387142757 hasRelatedWork W3193565141 @default.
- W4387142757 hasRelatedWork W3215138031 @default.
- W4387142757 hasRelatedWork W4226493464 @default.
- W4387142757 hasRelatedWork W4312417841 @default.
- W4387142757 hasRelatedWork W4321369474 @default.
- W4387142757 hasRelatedWork W4360585206 @default.
- W4387142757 hasVolume "319" @default.
- W4387142757 isParatext "false" @default.
- W4387142757 isRetracted "false" @default.
- W4387142757 workType "article" @default.