Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387143016> ?p ?o ?g. }
- W4387143016 abstract "Rationale and Objectives Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I–II and stage III–IV, and also compared these models with radiologists. Materials and Methods Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs) > 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging. Results The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588–0.820), 0.724 (95% CI: 0.613–0.835), and 0.849 (95% CI: 0.755–0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I–II from stage III–IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both). Conclusion The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging. Accurate staging of laryngeal carcinoma can inform appropriate treatment decision-making. We developed a radiomics model, a deep learning (DL) model, and a combined model (incorporating radiomics features and DL features) based on the venous-phase CT images and explored the performance of these models in stratifying patients with laryngeal carcinoma into stage I–II and stage III–IV, and also compared these models with radiologists. Three hundreds and nineteen patients with pathologically confirmed laryngeal carcinoma were randomly divided into a training set (n = 223) and a test set (n = 96). In the training set, the radiomics features with inter- and intraclass correlation coefficients (ICCs) > 0.75 were screened by Spearman correlation analysis and recursive feature elimination (RFE); then support vector machine (SVM) classifier was applied to develop the radiomics model. The DL model was built using ResNet 18 by the cropped 2D regions of interest (ROIs) in the maximum tumor ROI slices and the last fully connected layer of this network served as the DL feature extractor. Finally, a combined model was developed by pooling the radiomics features and extracted DL features to predict the staging. The area under the curves (AUCs) for radiomics model, DL model, and combined model in the test set were 0.704 (95% confidence interval [CI]: 0.588–0.820), 0.724 (95% CI: 0.613–0.835), and 0.849 (95% CI: 0.755–0.943), respectively. The combined model outperformed the radiomics model and the DL model in discriminating stage I–II from stage III–IV (p = 0.031 and p = 0.020, respectively). Only the combined model performed significantly better than radiologists (p < 0.050 for both). The combined model can help tailor the therapeutic strategy for laryngeal carcinoma patients by enabling more accurate preoperative staging." @default.
- W4387143016 created "2023-09-29" @default.
- W4387143016 creator A5011922533 @default.
- W4387143016 creator A5014115663 @default.
- W4387143016 creator A5028292396 @default.
- W4387143016 creator A5040339760 @default.
- W4387143016 creator A5040951562 @default.
- W4387143016 creator A5047512906 @default.
- W4387143016 creator A5057255170 @default.
- W4387143016 creator A5061096234 @default.
- W4387143016 creator A5062119492 @default.
- W4387143016 creator A5091878912 @default.
- W4387143016 date "2023-09-01" @default.
- W4387143016 modified "2023-10-02" @default.
- W4387143016 title "A Combined Model Integrating Radiomics and Deep Learning Based on Contrast-Enhanced CT for Preoperative Staging of Laryngeal Carcinoma" @default.
- W4387143016 cites W1997505929 @default.
- W4387143016 cites W2022516576 @default.
- W4387143016 cites W2040955908 @default.
- W4387143016 cites W2052914747 @default.
- W4387143016 cites W2060867475 @default.
- W4387143016 cites W2115009728 @default.
- W4387143016 cites W2140892482 @default.
- W4387143016 cites W2154835694 @default.
- W4387143016 cites W2472567488 @default.
- W4387143016 cites W2528491735 @default.
- W4387143016 cites W2579941249 @default.
- W4387143016 cites W2610551051 @default.
- W4387143016 cites W2623144351 @default.
- W4387143016 cites W2763355946 @default.
- W4387143016 cites W2767066726 @default.
- W4387143016 cites W2784442783 @default.
- W4387143016 cites W2801894005 @default.
- W4387143016 cites W2806717565 @default.
- W4387143016 cites W2879726520 @default.
- W4387143016 cites W2883201428 @default.
- W4387143016 cites W2887760652 @default.
- W4387143016 cites W2903589229 @default.
- W4387143016 cites W2945839551 @default.
- W4387143016 cites W2956123709 @default.
- W4387143016 cites W2971438638 @default.
- W4387143016 cites W2980292746 @default.
- W4387143016 cites W2998789541 @default.
- W4387143016 cites W2999469219 @default.
- W4387143016 cites W3046105906 @default.
- W4387143016 cites W3091929952 @default.
- W4387143016 cites W3099082009 @default.
- W4387143016 cites W3102745472 @default.
- W4387143016 cites W3128646645 @default.
- W4387143016 cites W4205644504 @default.
- W4387143016 cites W4213447132 @default.
- W4387143016 cites W4282934863 @default.
- W4387143016 cites W4283577487 @default.
- W4387143016 cites W4292092829 @default.
- W4387143016 cites W4292332691 @default.
- W4387143016 cites W4293515133 @default.
- W4387143016 doi "https://doi.org/10.1016/j.acra.2023.06.029" @default.
- W4387143016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37777428" @default.
- W4387143016 hasPublicationYear "2023" @default.
- W4387143016 type Work @default.
- W4387143016 citedByCount "0" @default.
- W4387143016 crossrefType "journal-article" @default.
- W4387143016 hasAuthorship W4387143016A5011922533 @default.
- W4387143016 hasAuthorship W4387143016A5014115663 @default.
- W4387143016 hasAuthorship W4387143016A5028292396 @default.
- W4387143016 hasAuthorship W4387143016A5040339760 @default.
- W4387143016 hasAuthorship W4387143016A5040951562 @default.
- W4387143016 hasAuthorship W4387143016A5047512906 @default.
- W4387143016 hasAuthorship W4387143016A5057255170 @default.
- W4387143016 hasAuthorship W4387143016A5061096234 @default.
- W4387143016 hasAuthorship W4387143016A5062119492 @default.
- W4387143016 hasAuthorship W4387143016A5091878912 @default.
- W4387143016 hasConcept C119857082 @default.
- W4387143016 hasConcept C126838900 @default.
- W4387143016 hasConcept C138885662 @default.
- W4387143016 hasConcept C146357865 @default.
- W4387143016 hasConcept C151730666 @default.
- W4387143016 hasConcept C154945302 @default.
- W4387143016 hasConcept C169903167 @default.
- W4387143016 hasConcept C2776401178 @default.
- W4387143016 hasConcept C2778559731 @default.
- W4387143016 hasConcept C41008148 @default.
- W4387143016 hasConcept C41895202 @default.
- W4387143016 hasConcept C71924100 @default.
- W4387143016 hasConcept C86803240 @default.
- W4387143016 hasConceptScore W4387143016C119857082 @default.
- W4387143016 hasConceptScore W4387143016C126838900 @default.
- W4387143016 hasConceptScore W4387143016C138885662 @default.
- W4387143016 hasConceptScore W4387143016C146357865 @default.
- W4387143016 hasConceptScore W4387143016C151730666 @default.
- W4387143016 hasConceptScore W4387143016C154945302 @default.
- W4387143016 hasConceptScore W4387143016C169903167 @default.
- W4387143016 hasConceptScore W4387143016C2776401178 @default.
- W4387143016 hasConceptScore W4387143016C2778559731 @default.
- W4387143016 hasConceptScore W4387143016C41008148 @default.
- W4387143016 hasConceptScore W4387143016C41895202 @default.
- W4387143016 hasConceptScore W4387143016C71924100 @default.
- W4387143016 hasConceptScore W4387143016C86803240 @default.
- W4387143016 hasLocation W43871430161 @default.
- W4387143016 hasLocation W43871430162 @default.
- W4387143016 hasOpenAccess W4387143016 @default.