Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387144311> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387144311 abstract "Abstract In this work a new multi-fidelity (MF) uncertainty quantification (UQ) framework is presented and applied to LS89 nozzle modified by fouling. Geometrical uncertainties significantly influence aerodynamic performance of gas turbines. One representative example is given by the airfoil shape modified by fouling deposition, as in turbine nozzle vanes, which generates high-dimensional input uncertainties. However, the traditional UQ approaches suffer from the curse of dimensionality phenomenon in predicting the influence of high-dimensional uncertainties. Thus, a new approach based on multi-fidelity deep neural networks (MF-DNN) was proposed in this paper to solve the high-dimensional UQ problem. The basic idea of MF-DNN is to ensure the approximation capability of neural networks based on abundant low-fidelity (LF) data and few high-fidelity (HF) data. The prediction accuracy of MF-DNN was first evaluated using a 15-dimensional benchmark function. An affordable turbomachinery UQ framework was then built based on the MF-DNN model, the sampling-, the parameterization- and the statistical processing modules. The impact of fouling deposition on LS89 nozzle vane flow was investigated using the proposed UQ framework. In detail, the MF-DNN was fine-tuned based on bi-level numerical simulation results: the 2D Euler flow field as low-fidelity data and the 3D Reynolds-Averaged Navier-Stokes (RANS) flow field as high-fidelity data. The UQ results show that the total pressure loss of LS89 vane is increased by at most 17.1 % or reduced by at most 4.3 %, while the mean value of loss is increased by 3.4 % compared to the baseline. The main reason for relative changes in turbine nozzle performance is that the geometric uncertainties induced by fouling deposition significantly alter the intensity of shock waves near the throat area and trailing edge. The developed UQ framework could provide a useful tool in the design and optimization of advanced turbomachinery considering high-dimensional input uncertainties." @default.
- W4387144311 created "2023-09-29" @default.
- W4387144311 creator A5021734424 @default.
- W4387144311 creator A5041477124 @default.
- W4387144311 creator A5052655520 @default.
- W4387144311 creator A5090819151 @default.
- W4387144311 date "2023-06-26" @default.
- W4387144311 modified "2023-10-18" @default.
- W4387144311 title "High-Dimensional Uncertainty Quantification of High-Pressure Turbine Vane Based on Multi-Fidelity Deep Neural Networks" @default.
- W4387144311 doi "https://doi.org/10.1115/gt2023-101698" @default.
- W4387144311 hasPublicationYear "2023" @default.
- W4387144311 type Work @default.
- W4387144311 citedByCount "0" @default.
- W4387144311 crossrefType "proceedings-article" @default.
- W4387144311 hasAuthorship W4387144311A5021734424 @default.
- W4387144311 hasAuthorship W4387144311A5041477124 @default.
- W4387144311 hasAuthorship W4387144311A5052655520 @default.
- W4387144311 hasAuthorship W4387144311A5090819151 @default.
- W4387144311 hasConcept C105923489 @default.
- W4387144311 hasConcept C112124176 @default.
- W4387144311 hasConcept C11413529 @default.
- W4387144311 hasConcept C119857082 @default.
- W4387144311 hasConcept C127413603 @default.
- W4387144311 hasConcept C146978453 @default.
- W4387144311 hasConcept C154945302 @default.
- W4387144311 hasConcept C1633027 @default.
- W4387144311 hasConcept C178790620 @default.
- W4387144311 hasConcept C185592680 @default.
- W4387144311 hasConcept C2778449969 @default.
- W4387144311 hasConcept C32230216 @default.
- W4387144311 hasConcept C32526432 @default.
- W4387144311 hasConcept C41008148 @default.
- W4387144311 hasConcept C50644808 @default.
- W4387144311 hasConcept C56200935 @default.
- W4387144311 hasConcept C83104080 @default.
- W4387144311 hasConceptScore W4387144311C105923489 @default.
- W4387144311 hasConceptScore W4387144311C112124176 @default.
- W4387144311 hasConceptScore W4387144311C11413529 @default.
- W4387144311 hasConceptScore W4387144311C119857082 @default.
- W4387144311 hasConceptScore W4387144311C127413603 @default.
- W4387144311 hasConceptScore W4387144311C146978453 @default.
- W4387144311 hasConceptScore W4387144311C154945302 @default.
- W4387144311 hasConceptScore W4387144311C1633027 @default.
- W4387144311 hasConceptScore W4387144311C178790620 @default.
- W4387144311 hasConceptScore W4387144311C185592680 @default.
- W4387144311 hasConceptScore W4387144311C2778449969 @default.
- W4387144311 hasConceptScore W4387144311C32230216 @default.
- W4387144311 hasConceptScore W4387144311C32526432 @default.
- W4387144311 hasConceptScore W4387144311C41008148 @default.
- W4387144311 hasConceptScore W4387144311C50644808 @default.
- W4387144311 hasConceptScore W4387144311C56200935 @default.
- W4387144311 hasConceptScore W4387144311C83104080 @default.
- W4387144311 hasLocation W43871443111 @default.
- W4387144311 hasOpenAccess W4387144311 @default.
- W4387144311 hasPrimaryLocation W43871443111 @default.
- W4387144311 hasRelatedWork W2323842516 @default.
- W4387144311 hasRelatedWork W2332191808 @default.
- W4387144311 hasRelatedWork W2334935813 @default.
- W4387144311 hasRelatedWork W2368120764 @default.
- W4387144311 hasRelatedWork W2476564958 @default.
- W4387144311 hasRelatedWork W2912423880 @default.
- W4387144311 hasRelatedWork W2975785702 @default.
- W4387144311 hasRelatedWork W3021782095 @default.
- W4387144311 hasRelatedWork W3120196153 @default.
- W4387144311 hasRelatedWork W4237741484 @default.
- W4387144311 isParatext "false" @default.
- W4387144311 isRetracted "false" @default.
- W4387144311 workType "article" @default.