Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387144498> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387144498 abstract "Abstract Sensitivity analysis is a commonly used method in engineering applications to identify the input variables whose variance has the largest impact on the variance of a model output. Two major difficulties are often encountered. First, many computationally intensive model evaluations are required to obtain sensitivity indices with high statistical confidence. Second, input variables are often correlated, which cannot be handled unambiguously by most sensitivity analysis methods. Shapley values are a promising sensitivity measure for problems with correlations between input variables, as interaction effects are distributed evenly among the respective input parameters. However, Shapley values are affected by spurious correlations with input variables that have no functional influence. In this case, the Shapley value is dispersed and its significance is reduced. Therefore, a sensitivity measure that detects input variables without functional influence is desirable. This paper analyzes the behavior of different sensitivity measures with respect to correlated input variables. It is shown that first-order and total-effect Sobol sensitivity indices, and Shapley values alone do not fully detect input variables without functional influence. Therefore, the modified coefficient of importance is introduced to detect such input variables. In the final part of this paper, a sensitivity analysis for a compressor blade subject to manufacturing variability and wear is performed using the aforementioned sensitivity measures. The blade variation is described by profile parameters. First, the sensitivity analysis is performed, which allows to identify profile parameters that have no functional influence on the isentropic efficiency. Then, the sensitivity analysis is repeated with appropriately grouped profile parameters. It is found that the profile parameters describing the blade thickness have the greatest influence on the variance of the efficiency. With the proposed approach, it is therefore possible to identify the most important profile parameters, even if they are correlated." @default.
- W4387144498 created "2023-09-29" @default.
- W4387144498 creator A5022850281 @default.
- W4387144498 creator A5055738170 @default.
- W4387144498 creator A5056792823 @default.
- W4387144498 creator A5084702924 @default.
- W4387144498 creator A5085789692 @default.
- W4387144498 date "2023-06-26" @default.
- W4387144498 modified "2023-10-18" @default.
- W4387144498 title "Sensitivity Analysis of Performance Parameters of a Compressor Blade With Correlated Profile Parameters" @default.
- W4387144498 doi "https://doi.org/10.1115/gt2023-102442" @default.
- W4387144498 hasPublicationYear "2023" @default.
- W4387144498 type Work @default.
- W4387144498 citedByCount "0" @default.
- W4387144498 crossrefType "proceedings-article" @default.
- W4387144498 hasAuthorship W4387144498A5022850281 @default.
- W4387144498 hasAuthorship W4387144498A5055738170 @default.
- W4387144498 hasAuthorship W4387144498A5056792823 @default.
- W4387144498 hasAuthorship W4387144498A5084702924 @default.
- W4387144498 hasAuthorship W4387144498A5085789692 @default.
- W4387144498 hasConcept C105795698 @default.
- W4387144498 hasConcept C108311543 @default.
- W4387144498 hasConcept C121955636 @default.
- W4387144498 hasConcept C124101348 @default.
- W4387144498 hasConcept C127413603 @default.
- W4387144498 hasConcept C144133560 @default.
- W4387144498 hasConcept C152587130 @default.
- W4387144498 hasConcept C196083921 @default.
- W4387144498 hasConcept C21200559 @default.
- W4387144498 hasConcept C24326235 @default.
- W4387144498 hasConcept C2780009758 @default.
- W4387144498 hasConcept C33923547 @default.
- W4387144498 hasConcept C41008148 @default.
- W4387144498 hasConcept C49740808 @default.
- W4387144498 hasConcept C97256817 @default.
- W4387144498 hasConcept C99476002 @default.
- W4387144498 hasConceptScore W4387144498C105795698 @default.
- W4387144498 hasConceptScore W4387144498C108311543 @default.
- W4387144498 hasConceptScore W4387144498C121955636 @default.
- W4387144498 hasConceptScore W4387144498C124101348 @default.
- W4387144498 hasConceptScore W4387144498C127413603 @default.
- W4387144498 hasConceptScore W4387144498C144133560 @default.
- W4387144498 hasConceptScore W4387144498C152587130 @default.
- W4387144498 hasConceptScore W4387144498C196083921 @default.
- W4387144498 hasConceptScore W4387144498C21200559 @default.
- W4387144498 hasConceptScore W4387144498C24326235 @default.
- W4387144498 hasConceptScore W4387144498C2780009758 @default.
- W4387144498 hasConceptScore W4387144498C33923547 @default.
- W4387144498 hasConceptScore W4387144498C41008148 @default.
- W4387144498 hasConceptScore W4387144498C49740808 @default.
- W4387144498 hasConceptScore W4387144498C97256817 @default.
- W4387144498 hasConceptScore W4387144498C99476002 @default.
- W4387144498 hasLocation W43871444981 @default.
- W4387144498 hasOpenAccess W4387144498 @default.
- W4387144498 hasPrimaryLocation W43871444981 @default.
- W4387144498 hasRelatedWork W2041062006 @default.
- W4387144498 hasRelatedWork W2087550141 @default.
- W4387144498 hasRelatedWork W2107880495 @default.
- W4387144498 hasRelatedWork W2108419648 @default.
- W4387144498 hasRelatedWork W2118457152 @default.
- W4387144498 hasRelatedWork W2743086754 @default.
- W4387144498 hasRelatedWork W2810515513 @default.
- W4387144498 hasRelatedWork W2891716575 @default.
- W4387144498 hasRelatedWork W3097926108 @default.
- W4387144498 hasRelatedWork W36393502 @default.
- W4387144498 isParatext "false" @default.
- W4387144498 isRetracted "false" @default.
- W4387144498 workType "article" @default.