Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387145399> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4387145399 endingPage "1" @default.
- W4387145399 startingPage "1" @default.
- W4387145399 abstract "Aim: As people's quality of life and habits have changed, Coronary Artery Disease (CAD) has become the leading cause of death globally. It is a complicated cardiac disease with various risk factors and a wide range of symptoms. An early and accurate diagnosis of CAD allows for the quick administration of appropriate treatment, which contributes to a decreased mortality rate. Machine learning (ML) algorithms for CAD prediction and treatment decisions are quickly being developed and implemented in clinical practice. Predictive models based on machine learning algorithms may aid health personnel in the early diagnosis of CAD, lowering mortality. Thus, this study goal is to forecast the elements that may be connected with CAD using tree-based approaches, which are one of the machine learning methods, and to discover which factor is more effective on CAD. Material and Methods: The open-access heart disease dataset was used within the scope of the study to investigate the risk factors related with CAD. The data set used contains the values of 333 patients, as well as 20 input and 1 target variables. The 10-fold cross validation approach was employed in the modeling, and the data set was divided as 80%: 20% as training and test datasets. For model assessment, the measures of accuracy (ACC), balanced accuracy (b-ACC), sensitivity (SE), specificity (SP), positive predictive value (ppv), negative predictive value (npv), and F1-score were utilized. Results: The values of ACC, b-ACC, SE, SP, ppv, npv, and F1-score performance metrics were 9 98.5%, 98.8%, 97.7%, 100%, 100%, 95.8% and 98.8%, respectively, as a consequence of the estimate model results created with the XGBoost approach, which has the best performance among tree-based models. When the groups with or without CAD were compared, a statistically significant difference was found in terms of the age variable. There is also a significant relationship between the active, lifestyle, ihd, dm, ecgpatt, qwave variables and the presence/absence of the CAD variable. When the variable significance values obtained as a result of modeling with the highest performing XGBoost are examined, it is seen that the variables that most associated with CAD are ekgpatt: normal, ekgpatt: ST-depression, ekgpatt: T-inversion, qwave: yes, age, bpdias, height, LDL, HR, IVSD: with LVH, bpsyDM. Conclusion: According to the performance criteria of the forecasting models used, CAD gave distinctively successful results in forecasting. By identifying risk factors associated with CAD, the proposed machine learning models can provide clinicians with practical, cost-effective and beneficial assistance in making accurate predictive decisions." @default.
- W4387145399 created "2023-09-29" @default.
- W4387145399 creator A5001581332 @default.
- W4387145399 creator A5048757534 @default.
- W4387145399 date "2023-01-01" @default.
- W4387145399 modified "2023-10-18" @default.
- W4387145399 title "A Prediction Model Created by Comparing Tree-Based Methods To Assess Coronary Artery Disease" @default.
- W4387145399 doi "https://doi.org/10.5455/annalsmedres.2023.08.204" @default.
- W4387145399 hasPublicationYear "2023" @default.
- W4387145399 type Work @default.
- W4387145399 citedByCount "0" @default.
- W4387145399 crossrefType "journal-article" @default.
- W4387145399 hasAuthorship W4387145399A5001581332 @default.
- W4387145399 hasAuthorship W4387145399A5048757534 @default.
- W4387145399 hasBestOaLocation W43871453991 @default.
- W4387145399 hasConcept C113174947 @default.
- W4387145399 hasConcept C119857082 @default.
- W4387145399 hasConcept C124101348 @default.
- W4387145399 hasConcept C126322002 @default.
- W4387145399 hasConcept C127413603 @default.
- W4387145399 hasConcept C134306372 @default.
- W4387145399 hasConcept C154945302 @default.
- W4387145399 hasConcept C194789388 @default.
- W4387145399 hasConcept C199639397 @default.
- W4387145399 hasConcept C2778213512 @default.
- W4387145399 hasConcept C2779134260 @default.
- W4387145399 hasConcept C3019719930 @default.
- W4387145399 hasConcept C33923547 @default.
- W4387145399 hasConcept C41008148 @default.
- W4387145399 hasConcept C45804977 @default.
- W4387145399 hasConcept C5481197 @default.
- W4387145399 hasConcept C71924100 @default.
- W4387145399 hasConcept C84525736 @default.
- W4387145399 hasConceptScore W4387145399C113174947 @default.
- W4387145399 hasConceptScore W4387145399C119857082 @default.
- W4387145399 hasConceptScore W4387145399C124101348 @default.
- W4387145399 hasConceptScore W4387145399C126322002 @default.
- W4387145399 hasConceptScore W4387145399C127413603 @default.
- W4387145399 hasConceptScore W4387145399C134306372 @default.
- W4387145399 hasConceptScore W4387145399C154945302 @default.
- W4387145399 hasConceptScore W4387145399C194789388 @default.
- W4387145399 hasConceptScore W4387145399C199639397 @default.
- W4387145399 hasConceptScore W4387145399C2778213512 @default.
- W4387145399 hasConceptScore W4387145399C2779134260 @default.
- W4387145399 hasConceptScore W4387145399C3019719930 @default.
- W4387145399 hasConceptScore W4387145399C33923547 @default.
- W4387145399 hasConceptScore W4387145399C41008148 @default.
- W4387145399 hasConceptScore W4387145399C45804977 @default.
- W4387145399 hasConceptScore W4387145399C5481197 @default.
- W4387145399 hasConceptScore W4387145399C71924100 @default.
- W4387145399 hasConceptScore W4387145399C84525736 @default.
- W4387145399 hasIssue "9" @default.
- W4387145399 hasLocation W43871453991 @default.
- W4387145399 hasOpenAccess W4387145399 @default.
- W4387145399 hasPrimaryLocation W43871453991 @default.
- W4387145399 hasRelatedWork W1470425429 @default.
- W4387145399 hasRelatedWork W1987617434 @default.
- W4387145399 hasRelatedWork W2738041616 @default.
- W4387145399 hasRelatedWork W2795254123 @default.
- W4387145399 hasRelatedWork W3033979565 @default.
- W4387145399 hasRelatedWork W3094337650 @default.
- W4387145399 hasRelatedWork W3112290855 @default.
- W4387145399 hasRelatedWork W4280560892 @default.
- W4387145399 hasRelatedWork W4319430680 @default.
- W4387145399 hasRelatedWork W4320079523 @default.
- W4387145399 hasVolume "30" @default.
- W4387145399 isParatext "false" @default.
- W4387145399 isRetracted "false" @default.
- W4387145399 workType "article" @default.