Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387148461> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387148461 endingPage "325" @default.
- W4387148461 startingPage "275" @default.
- W4387148461 abstract "This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The study thoroughly investigated with advanced tools to scrutinize key performance indicators integral to the functioning of smart cities, thereby enhancing leadership and decision-making strategies. Our work involves the implementation of various machine learning models such as Logistic Regression, Support Vector Machine, Decision Tree, Naive Bayes, and Artificial Neural Networks (ANN), to the data. Notably, the Support Vector Machine and Bernoulli Naive Bayes models exhibit robust performance with an accuracy rate of 70% precision score. In particular, the study underscores the employment of an ANN model on our existing dataset, optimized using the Adam optimizer. Although the model yields an overall accuracy of 61% and a precision score of 58%, implying correct predictions for the positive class 58% of the time, a comprehensive performance assessment using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) metrics was necessary. This evaluation results in a score of 0.475 at a threshold of 0.5, indicating that there's room for model enhancement. These models and their performance metrics serve as a key cog in our data analytics pipeline, providing decision-makers and city leaders with actionable insights that can steer urban service management decisions. Through real-time data availability and intuitive visualization dashboards, these leaders can promptly comprehend the current state of their services, pinpoint areas requiring improvement, and make informed decisions to bolster these services. This research illuminates the potential for data analytics, machine learning, and AI to significantly upgrade urban service management in smart cities, fostering sustainable and livable communities. Moreover, our findings contribute valuable knowledge to other cities aiming to adopt similar strategies, thus aiding the continued development of smart cities globally." @default.
- W4387148461 created "2023-09-29" @default.
- W4387148461 creator A5000906704 @default.
- W4387148461 creator A5045799744 @default.
- W4387148461 date "2023-10-25" @default.
- W4387148461 modified "2023-10-18" @default.
- W4387148461 title "Employing AI and ML for Data Analytics on Key Indicators: Enhancing Smart City Urban Services and Dashboard-Driven Leadership and Decision-Making" @default.
- W4387148461 cites W2030674104 @default.
- W4387148461 cites W2053272364 @default.
- W4387148461 cites W2360849037 @default.
- W4387148461 cites W2519503545 @default.
- W4387148461 cites W2525066230 @default.
- W4387148461 cites W268895021 @default.
- W4387148461 cites W2790771741 @default.
- W4387148461 cites W2792464648 @default.
- W4387148461 cites W2950136154 @default.
- W4387148461 cites W2980020285 @default.
- W4387148461 cites W3033390640 @default.
- W4387148461 cites W3036625747 @default.
- W4387148461 cites W3124087318 @default.
- W4387148461 cites W3131217232 @default.
- W4387148461 cites W3181677354 @default.
- W4387148461 cites W4293770852 @default.
- W4387148461 doi "https://doi.org/10.1108/978-1-83753-022-920231013" @default.
- W4387148461 hasPublicationYear "2023" @default.
- W4387148461 type Work @default.
- W4387148461 citedByCount "0" @default.
- W4387148461 crossrefType "book-chapter" @default.
- W4387148461 hasAuthorship W4387148461A5000906704 @default.
- W4387148461 hasAuthorship W4387148461A5045799744 @default.
- W4387148461 hasConcept C119857082 @default.
- W4387148461 hasConcept C12267149 @default.
- W4387148461 hasConcept C124101348 @default.
- W4387148461 hasConcept C154945302 @default.
- W4387148461 hasConcept C169258074 @default.
- W4387148461 hasConcept C2522767166 @default.
- W4387148461 hasConcept C26517878 @default.
- W4387148461 hasConcept C33499554 @default.
- W4387148461 hasConcept C38652104 @default.
- W4387148461 hasConcept C41008148 @default.
- W4387148461 hasConcept C52001869 @default.
- W4387148461 hasConcept C79158427 @default.
- W4387148461 hasConcept C83209312 @default.
- W4387148461 hasConcept C84525736 @default.
- W4387148461 hasConceptScore W4387148461C119857082 @default.
- W4387148461 hasConceptScore W4387148461C12267149 @default.
- W4387148461 hasConceptScore W4387148461C124101348 @default.
- W4387148461 hasConceptScore W4387148461C154945302 @default.
- W4387148461 hasConceptScore W4387148461C169258074 @default.
- W4387148461 hasConceptScore W4387148461C2522767166 @default.
- W4387148461 hasConceptScore W4387148461C26517878 @default.
- W4387148461 hasConceptScore W4387148461C33499554 @default.
- W4387148461 hasConceptScore W4387148461C38652104 @default.
- W4387148461 hasConceptScore W4387148461C41008148 @default.
- W4387148461 hasConceptScore W4387148461C52001869 @default.
- W4387148461 hasConceptScore W4387148461C79158427 @default.
- W4387148461 hasConceptScore W4387148461C83209312 @default.
- W4387148461 hasConceptScore W4387148461C84525736 @default.
- W4387148461 hasLocation W43871484611 @default.
- W4387148461 hasOpenAccess W4387148461 @default.
- W4387148461 hasPrimaryLocation W43871484611 @default.
- W4387148461 hasRelatedWork W2985924212 @default.
- W4387148461 hasRelatedWork W3176795340 @default.
- W4387148461 hasRelatedWork W3215085357 @default.
- W4387148461 hasRelatedWork W4285407528 @default.
- W4387148461 hasRelatedWork W4313070894 @default.
- W4387148461 hasRelatedWork W4321636153 @default.
- W4387148461 hasRelatedWork W4377964522 @default.
- W4387148461 hasRelatedWork W4383746529 @default.
- W4387148461 hasRelatedWork W4384345534 @default.
- W4387148461 hasRelatedWork W4387055688 @default.
- W4387148461 isParatext "false" @default.
- W4387148461 isRetracted "false" @default.
- W4387148461 workType "book-chapter" @default.