Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387148966> ?p ?o ?g. }
- W4387148966 endingPage "105280" @default.
- W4387148966 startingPage "105280" @default.
- W4387148966 abstract "In this study, two binary versions of the Water Strider Algorithm (WSA) are proposed and applied to optimal feature selection in classification problems. In the new binary versions, the formulations of WSA in continuous space are converted into binary space using group-theoretic operators (in AWSA) and sigmoid function (in BWSA). AWSA, BWSA, genetic algorithm (GA), and binary particle swarm optimization (BPSO) are selected and compared over eighteen well-known datasets from the University of California, Irvine repository. The results of AWSA indicate its satisfactory performance compared to those of other algorithms. Then, they are applied to find optimal features of a structural health monitoring classification problem using two well-known machine learning classifiers, namely k-Nearest Neighbor (KNN) and Naïve Bayes (NB) algorithms. To further improve the accuracy of the classification models, a decision-level data fusion technique is proposed based on the improved Dempster-Shafer theory. It is demonstrated that the AWSA presents superior results compared to the other algorithms and the suggested decision-level data fusion provides a reliable detection of damage." @default.
- W4387148966 created "2023-09-29" @default.
- W4387148966 creator A5037620729 @default.
- W4387148966 creator A5047580007 @default.
- W4387148966 creator A5083574925 @default.
- W4387148966 creator A5089524314 @default.
- W4387148966 date "2023-11-01" @default.
- W4387148966 modified "2023-09-29" @default.
- W4387148966 title "Structural health monitoring via a group-theoretic WSA for optimal feature selection and data fusion" @default.
- W4387148966 cites W1444952417 @default.
- W4387148966 cites W1967677970 @default.
- W4387148966 cites W1990313671 @default.
- W4387148966 cites W1993885071 @default.
- W4387148966 cites W2000621750 @default.
- W4387148966 cites W2014610119 @default.
- W4387148966 cites W2014725748 @default.
- W4387148966 cites W2041282815 @default.
- W4387148966 cites W2048196003 @default.
- W4387148966 cites W2069229428 @default.
- W4387148966 cites W2075894130 @default.
- W4387148966 cites W2100558388 @default.
- W4387148966 cites W2146246871 @default.
- W4387148966 cites W2151554678 @default.
- W4387148966 cites W2167101736 @default.
- W4387148966 cites W2598849564 @default.
- W4387148966 cites W2605902561 @default.
- W4387148966 cites W2800287223 @default.
- W4387148966 cites W2892079407 @default.
- W4387148966 cites W2899750879 @default.
- W4387148966 cites W2943528199 @default.
- W4387148966 cites W2969323609 @default.
- W4387148966 cites W2999681686 @default.
- W4387148966 cites W3004565805 @default.
- W4387148966 cites W3009339760 @default.
- W4387148966 cites W3014054604 @default.
- W4387148966 cites W3033768870 @default.
- W4387148966 cites W3040786507 @default.
- W4387148966 cites W3087055935 @default.
- W4387148966 cites W3087374048 @default.
- W4387148966 cites W3128751695 @default.
- W4387148966 cites W3131320479 @default.
- W4387148966 cites W3135435311 @default.
- W4387148966 cites W3135755283 @default.
- W4387148966 cites W3152622178 @default.
- W4387148966 cites W3159514420 @default.
- W4387148966 cites W3163933871 @default.
- W4387148966 cites W3166193317 @default.
- W4387148966 cites W3183346900 @default.
- W4387148966 cites W3206292739 @default.
- W4387148966 cites W4205354799 @default.
- W4387148966 doi "https://doi.org/10.1016/j.istruc.2023.105280" @default.
- W4387148966 hasPublicationYear "2023" @default.
- W4387148966 type Work @default.
- W4387148966 citedByCount "0" @default.
- W4387148966 crossrefType "journal-article" @default.
- W4387148966 hasAuthorship W4387148966A5037620729 @default.
- W4387148966 hasAuthorship W4387148966A5047580007 @default.
- W4387148966 hasAuthorship W4387148966A5083574925 @default.
- W4387148966 hasAuthorship W4387148966A5089524314 @default.
- W4387148966 hasConcept C107673813 @default.
- W4387148966 hasConcept C119857082 @default.
- W4387148966 hasConcept C12267149 @default.
- W4387148966 hasConcept C124101348 @default.
- W4387148966 hasConcept C127413603 @default.
- W4387148966 hasConcept C138885662 @default.
- W4387148966 hasConcept C148483581 @default.
- W4387148966 hasConcept C153180895 @default.
- W4387148966 hasConcept C154945302 @default.
- W4387148966 hasConcept C158525013 @default.
- W4387148966 hasConcept C176066374 @default.
- W4387148966 hasConcept C207201462 @default.
- W4387148966 hasConcept C2776247918 @default.
- W4387148966 hasConcept C2776401178 @default.
- W4387148966 hasConcept C33923547 @default.
- W4387148966 hasConcept C33954974 @default.
- W4387148966 hasConcept C41008148 @default.
- W4387148966 hasConcept C41895202 @default.
- W4387148966 hasConcept C48372109 @default.
- W4387148966 hasConcept C50644808 @default.
- W4387148966 hasConcept C52001869 @default.
- W4387148966 hasConcept C66905080 @default.
- W4387148966 hasConcept C66938386 @default.
- W4387148966 hasConcept C81388566 @default.
- W4387148966 hasConcept C81917197 @default.
- W4387148966 hasConcept C85617194 @default.
- W4387148966 hasConcept C8880873 @default.
- W4387148966 hasConcept C94375191 @default.
- W4387148966 hasConceptScore W4387148966C107673813 @default.
- W4387148966 hasConceptScore W4387148966C119857082 @default.
- W4387148966 hasConceptScore W4387148966C12267149 @default.
- W4387148966 hasConceptScore W4387148966C124101348 @default.
- W4387148966 hasConceptScore W4387148966C127413603 @default.
- W4387148966 hasConceptScore W4387148966C138885662 @default.
- W4387148966 hasConceptScore W4387148966C148483581 @default.
- W4387148966 hasConceptScore W4387148966C153180895 @default.
- W4387148966 hasConceptScore W4387148966C154945302 @default.
- W4387148966 hasConceptScore W4387148966C158525013 @default.
- W4387148966 hasConceptScore W4387148966C176066374 @default.