Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387149023> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4387149023 endingPage "104892" @default.
- W4387149023 startingPage "104892" @default.
- W4387149023 abstract "Tree root blockages can occur when tree roots enter sewer pipes, resulting potentially in high economic and environmental costs. However, comprehensive understanding of which tree species and environmental factors (i.e., soil, hydrological and landscape properties) may most impact sewer blockages remains unclear. We integrated sewer pipe, tree and environmental data from 103 suburbs across seven local government areas to identify the most significant factors affecting root blockages along 902 km of sewer infrastructure in Sydney, Australia. Distributed Random Forest (DRF) models were used to predict 2,942 root blockages that occurred between 2010 and 2019 along 22,192 sewer pipe segments, and to relate these to 90,858 tree stems of 651 tree species, while accounting for other pipe and environmental variables. We found that tree root blockages were clustered across the urban landscape, creating “blockage hotspots”. Tree stem abundance was positively correlated with number of blockages. We found that urban morphology and pipe characteristics were more important than tree characteristics (for example stem size, useful life expectancy) in explaining root blockages. We also found that the number of tree stems and the abundance of the Chinese banyan (Ficus macrocarpa) were the most important variables predicting frequency of root blockages per unit pipe length. The most important landscape variables were slope, aspect, soil salinity and available water content, while most pipe-related variables also explained significant deviance in the DRF model. This study is among the first to mine large datasets representing urban infrastructure, tree and environmental datasets to predict their role on sewer blockages and toward the proactive management of sewerage infrastructure. Furthermore, our approach may be applied to improve urban greening efforts, thus minimising future conflicts with, and costly disruptions to, underground infrastructure." @default.
- W4387149023 created "2023-09-29" @default.
- W4387149023 creator A5015267461 @default.
- W4387149023 creator A5045425108 @default.
- W4387149023 creator A5056627477 @default.
- W4387149023 creator A5059015062 @default.
- W4387149023 creator A5073800707 @default.
- W4387149023 creator A5076355445 @default.
- W4387149023 date "2023-12-01" @default.
- W4387149023 modified "2023-10-06" @default.
- W4387149023 title "Research note: Integrating big data to predict tree root blockages across sewer networks" @default.
- W4387149023 cites W1984389598 @default.
- W4387149023 cites W2000358236 @default.
- W4387149023 cites W2056864026 @default.
- W4387149023 cites W2075424521 @default.
- W4387149023 cites W2083914267 @default.
- W4387149023 cites W2131029328 @default.
- W4387149023 cites W2546862570 @default.
- W4387149023 cites W2610879742 @default.
- W4387149023 cites W2766864272 @default.
- W4387149023 cites W2883874119 @default.
- W4387149023 cites W2901377385 @default.
- W4387149023 cites W2982512126 @default.
- W4387149023 cites W3000242826 @default.
- W4387149023 cites W3048636741 @default.
- W4387149023 cites W3131948008 @default.
- W4387149023 cites W3196615289 @default.
- W4387149023 cites W4205778274 @default.
- W4387149023 doi "https://doi.org/10.1016/j.landurbplan.2023.104892" @default.
- W4387149023 hasPublicationYear "2023" @default.
- W4387149023 type Work @default.
- W4387149023 citedByCount "0" @default.
- W4387149023 crossrefType "journal-article" @default.
- W4387149023 hasAuthorship W4387149023A5015267461 @default.
- W4387149023 hasAuthorship W4387149023A5045425108 @default.
- W4387149023 hasAuthorship W4387149023A5056627477 @default.
- W4387149023 hasAuthorship W4387149023A5059015062 @default.
- W4387149023 hasAuthorship W4387149023A5073800707 @default.
- W4387149023 hasAuthorship W4387149023A5076355445 @default.
- W4387149023 hasBestOaLocation W43871490231 @default.
- W4387149023 hasConcept C113174947 @default.
- W4387149023 hasConcept C127313418 @default.
- W4387149023 hasConcept C134306372 @default.
- W4387149023 hasConcept C187320778 @default.
- W4387149023 hasConcept C18903297 @default.
- W4387149023 hasConcept C33923547 @default.
- W4387149023 hasConcept C39432304 @default.
- W4387149023 hasConcept C76886044 @default.
- W4387149023 hasConcept C86803240 @default.
- W4387149023 hasConceptScore W4387149023C113174947 @default.
- W4387149023 hasConceptScore W4387149023C127313418 @default.
- W4387149023 hasConceptScore W4387149023C134306372 @default.
- W4387149023 hasConceptScore W4387149023C187320778 @default.
- W4387149023 hasConceptScore W4387149023C18903297 @default.
- W4387149023 hasConceptScore W4387149023C33923547 @default.
- W4387149023 hasConceptScore W4387149023C39432304 @default.
- W4387149023 hasConceptScore W4387149023C76886044 @default.
- W4387149023 hasConceptScore W4387149023C86803240 @default.
- W4387149023 hasFunder F4320314911 @default.
- W4387149023 hasFunder F4320320591 @default.
- W4387149023 hasLocation W43871490231 @default.
- W4387149023 hasOpenAccess W4387149023 @default.
- W4387149023 hasPrimaryLocation W43871490231 @default.
- W4387149023 hasRelatedWork W1984740135 @default.
- W4387149023 hasRelatedWork W2110536732 @default.
- W4387149023 hasRelatedWork W2324127485 @default.
- W4387149023 hasRelatedWork W2374021052 @default.
- W4387149023 hasRelatedWork W2899084033 @default.
- W4387149023 hasRelatedWork W3007404728 @default.
- W4387149023 hasRelatedWork W3117958761 @default.
- W4387149023 hasRelatedWork W4206359692 @default.
- W4387149023 hasRelatedWork W4280521631 @default.
- W4387149023 hasRelatedWork W4300555509 @default.
- W4387149023 hasVolume "240" @default.
- W4387149023 isParatext "false" @default.
- W4387149023 isRetracted "false" @default.
- W4387149023 workType "article" @default.