Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387149828> ?p ?o ?g. }
- W4387149828 endingPage "108272" @default.
- W4387149828 startingPage "108272" @default.
- W4387149828 abstract "This study aims to improve the accuracy and applicability of traditional linear regression and machine learning algorithms for monitoring soil moisture content by satellite remote sensing. Shahaoqu Experimental Station within Jiefangzha Irrigation District of Hetao Irrigation Area is selected as the study area. The dataset includes GF-1 satellite remote sensing images and measured soil moisture content. The study employs the best subset selection to determine the combination of sensitive variables for soil moisture content at different soil depths. Additionally, robust regression theory is introduced to traditional linear regression and machine learning algorithms to construct soil moisture content inversion models at different soil depths. The results show that all three improved robust algorithms effectively reduce the influence of outliers, improve the accuracy and stability of these inversion models. The improved robust nonlinear algorithm outperforms the improved robust linear algorithm. Compared with the unprocessed algorithm, at the soil depth of 0–20 cm, Robust Extreme Learning Machine (RELM) algorithm is the most optimal, with the validation set's R2adj increasing from 0.555 to 0.696 (approximately 25.33%) and the RMSE decreasing from 0.025 to 0.018 (approximately 26.54%). Robust Least Squares Support Vector Machine (RLSSVM) algorithm is the second best, with the validation set's R2adj increasing from 0.502 to 0.641 (approximately 27.75%) and the RMSE decreasing from 0.026 to 0.020 (approximately 24.59%). Robust Linear Regression (LMS-RLS) algorithm is relatively the worst, with the validation set's R2adj increasing from 0.491 to 0.659 (approximately 34.05%) and the RMSE decreasing from 0.026 to 0.019 (approximately 27.21%). The sensitivity of the five soil depths to soil moisture content follows the order of 0–20 cm, 20–40 cm, 0–60 cm, 0–40 cm, and 40–60 cm. The improved robust regression algorithms can improve the accuracy and applicability of soil moisture content estimation and provide a reference for monitoring soil moisture content using GF-1 satellite." @default.
- W4387149828 created "2023-09-29" @default.
- W4387149828 creator A5011090502 @default.
- W4387149828 creator A5026704485 @default.
- W4387149828 creator A5027690751 @default.
- W4387149828 creator A5030894785 @default.
- W4387149828 creator A5035520440 @default.
- W4387149828 creator A5039983089 @default.
- W4387149828 creator A5073935489 @default.
- W4387149828 creator A5087144306 @default.
- W4387149828 date "2023-10-01" @default.
- W4387149828 modified "2023-10-17" @default.
- W4387149828 title "Research on robust inversion model of soil moisture content based on GF-1 satellite remote sensing" @default.
- W4387149828 cites W1596717185 @default.
- W4387149828 cites W1978996791 @default.
- W4387149828 cites W1986096622 @default.
- W4387149828 cites W1993717606 @default.
- W4387149828 cites W2026131661 @default.
- W4387149828 cites W2042442229 @default.
- W4387149828 cites W2048777337 @default.
- W4387149828 cites W2059800482 @default.
- W4387149828 cites W2076196252 @default.
- W4387149828 cites W2084315701 @default.
- W4387149828 cites W2111072639 @default.
- W4387149828 cites W2137130182 @default.
- W4387149828 cites W2141695047 @default.
- W4387149828 cites W2238263256 @default.
- W4387149828 cites W2238337252 @default.
- W4387149828 cites W2320553484 @default.
- W4387149828 cites W2327887192 @default.
- W4387149828 cites W2564922865 @default.
- W4387149828 cites W2801594925 @default.
- W4387149828 cites W2897221258 @default.
- W4387149828 cites W2906500582 @default.
- W4387149828 cites W2912601201 @default.
- W4387149828 cites W2923750943 @default.
- W4387149828 cites W2937654329 @default.
- W4387149828 cites W2957367360 @default.
- W4387149828 cites W2963662460 @default.
- W4387149828 cites W2976338021 @default.
- W4387149828 cites W3092900167 @default.
- W4387149828 cites W3117496561 @default.
- W4387149828 cites W3137470450 @default.
- W4387149828 cites W3152627825 @default.
- W4387149828 cites W3205677486 @default.
- W4387149828 cites W3214886708 @default.
- W4387149828 cites W4308041403 @default.
- W4387149828 cites W4321766238 @default.
- W4387149828 cites W4379507867 @default.
- W4387149828 doi "https://doi.org/10.1016/j.compag.2023.108272" @default.
- W4387149828 hasPublicationYear "2023" @default.
- W4387149828 type Work @default.
- W4387149828 citedByCount "0" @default.
- W4387149828 crossrefType "journal-article" @default.
- W4387149828 hasAuthorship W4387149828A5011090502 @default.
- W4387149828 hasAuthorship W4387149828A5026704485 @default.
- W4387149828 hasAuthorship W4387149828A5027690751 @default.
- W4387149828 hasAuthorship W4387149828A5030894785 @default.
- W4387149828 hasAuthorship W4387149828A5035520440 @default.
- W4387149828 hasAuthorship W4387149828A5039983089 @default.
- W4387149828 hasAuthorship W4387149828A5073935489 @default.
- W4387149828 hasAuthorship W4387149828A5087144306 @default.
- W4387149828 hasConcept C105795698 @default.
- W4387149828 hasConcept C109007969 @default.
- W4387149828 hasConcept C11413529 @default.
- W4387149828 hasConcept C12267149 @default.
- W4387149828 hasConcept C127413603 @default.
- W4387149828 hasConcept C139945424 @default.
- W4387149828 hasConcept C146978453 @default.
- W4387149828 hasConcept C151730666 @default.
- W4387149828 hasConcept C154945302 @default.
- W4387149828 hasConcept C159390177 @default.
- W4387149828 hasConcept C187320778 @default.
- W4387149828 hasConcept C1893757 @default.
- W4387149828 hasConcept C19269812 @default.
- W4387149828 hasConcept C205649164 @default.
- W4387149828 hasConcept C24939127 @default.
- W4387149828 hasConcept C2780150128 @default.
- W4387149828 hasConcept C33923547 @default.
- W4387149828 hasConcept C39432304 @default.
- W4387149828 hasConcept C41008148 @default.
- W4387149828 hasConcept C48921125 @default.
- W4387149828 hasConcept C50644808 @default.
- W4387149828 hasConcept C62649853 @default.
- W4387149828 hasConcept C79337645 @default.
- W4387149828 hasConcept C86803240 @default.
- W4387149828 hasConceptScore W4387149828C105795698 @default.
- W4387149828 hasConceptScore W4387149828C109007969 @default.
- W4387149828 hasConceptScore W4387149828C11413529 @default.
- W4387149828 hasConceptScore W4387149828C12267149 @default.
- W4387149828 hasConceptScore W4387149828C127413603 @default.
- W4387149828 hasConceptScore W4387149828C139945424 @default.
- W4387149828 hasConceptScore W4387149828C146978453 @default.
- W4387149828 hasConceptScore W4387149828C151730666 @default.
- W4387149828 hasConceptScore W4387149828C154945302 @default.
- W4387149828 hasConceptScore W4387149828C159390177 @default.
- W4387149828 hasConceptScore W4387149828C187320778 @default.
- W4387149828 hasConceptScore W4387149828C1893757 @default.