Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387150867> ?p ?o ?g. }
- W4387150867 endingPage "129906" @default.
- W4387150867 startingPage "129906" @default.
- W4387150867 abstract "The global clean energy shortage has become a significant concern along with environmental pollution caused by the burning of conventional fuels. Natural gas hydrates are considered to be a potential source of clean energy with vast resources widely distributed in permafrost and marine sediments. In order to improve the gas production efficiency from Class III hydrate reservoirs, an innovative production method using low-frequency electric heating-assisted depressurization with the dual-horizontal well mode is first proposed. This method takes advantage of the in-situ heat generated within the hydrate layer through a low-frequency electric field and the wide range of fluid flow and uniform heating of horizontal wells. To better understand the production mechanisms of the proposed method and evaluate its feasibility for increasing gas production, its production performance is analyzed in this work using numerical simulations. Based on the geological data of the Shenhu Area in the South China Sea, a numerical simulation model is first established. Then, the gas production and energy recovery performance are studied. Finally, the influence of production parameters on production performance is analyzed. The results show that additional heat input at the early stage of production can have a synergistic effect with depressurization in the gradient decreasing voltage heating mode, thus resulting in better production performance compared to the gradient increasing voltage and constant voltage modes. The maximum energy efficiency ratio can reach 17.65, which implies that the energy utilization efficiency of the proposed method has great potential for hydrate recovery. Horizontal wells have a larger wellbore contact area with the hydrate reservoir compared to vertical wells; therefore, they exhibit an expanded range of depressurization and hydrate dissociation. When the horizontal wells are positioned in the upper part of the hydrate layer, the negative impact caused by gravity can be reduced. Cumulative gas production increases with the initial voltage, but the energy efficiency ratio decreases, highlighting the need for optimizing the initial voltage. The proposed method and the findings of this work provide a useful reference for the efficient development of gas hydrate reservoirs." @default.
- W4387150867 created "2023-09-29" @default.
- W4387150867 creator A5024381190 @default.
- W4387150867 creator A5048738471 @default.
- W4387150867 creator A5029066280 @default.
- W4387150867 date "2024-02-01" @default.
- W4387150867 modified "2023-10-06" @default.
- W4387150867 title "Numerical simulation of gas production from Class III hydrate reservoirs using low-frequency electric heating-assisted depressurization with horizontal wells" @default.
- W4387150867 cites W1974219148 @default.
- W4387150867 cites W1981822625 @default.
- W4387150867 cites W1993023882 @default.
- W4387150867 cites W1993272276 @default.
- W4387150867 cites W2012042334 @default.
- W4387150867 cites W2013536899 @default.
- W4387150867 cites W2023928362 @default.
- W4387150867 cites W2031161506 @default.
- W4387150867 cites W2037812975 @default.
- W4387150867 cites W2045780987 @default.
- W4387150867 cites W2049906307 @default.
- W4387150867 cites W2054799026 @default.
- W4387150867 cites W2073969459 @default.
- W4387150867 cites W2085519620 @default.
- W4387150867 cites W2087452412 @default.
- W4387150867 cites W2108362114 @default.
- W4387150867 cites W2122245551 @default.
- W4387150867 cites W2287514745 @default.
- W4387150867 cites W2345786024 @default.
- W4387150867 cites W2347132118 @default.
- W4387150867 cites W2733447672 @default.
- W4387150867 cites W2745917570 @default.
- W4387150867 cites W2759222036 @default.
- W4387150867 cites W2766783540 @default.
- W4387150867 cites W2775566262 @default.
- W4387150867 cites W2777219923 @default.
- W4387150867 cites W2789354433 @default.
- W4387150867 cites W2790802476 @default.
- W4387150867 cites W2796340328 @default.
- W4387150867 cites W2884014046 @default.
- W4387150867 cites W2884797456 @default.
- W4387150867 cites W2944213288 @default.
- W4387150867 cites W2946638399 @default.
- W4387150867 cites W3045577536 @default.
- W4387150867 cites W3046123216 @default.
- W4387150867 cites W3046282543 @default.
- W4387150867 cites W3049322875 @default.
- W4387150867 cites W3083981341 @default.
- W4387150867 cites W3099771141 @default.
- W4387150867 cites W3105711722 @default.
- W4387150867 cites W3119735585 @default.
- W4387150867 cites W3125616375 @default.
- W4387150867 cites W3131583358 @default.
- W4387150867 cites W3167309168 @default.
- W4387150867 cites W3171941797 @default.
- W4387150867 cites W3172982437 @default.
- W4387150867 cites W3193112826 @default.
- W4387150867 cites W3207994622 @default.
- W4387150867 cites W3213318945 @default.
- W4387150867 cites W4200351803 @default.
- W4387150867 cites W4221117458 @default.
- W4387150867 cites W4283582667 @default.
- W4387150867 cites W4286515976 @default.
- W4387150867 cites W4288035153 @default.
- W4387150867 cites W4294718767 @default.
- W4387150867 cites W4296904260 @default.
- W4387150867 cites W4308311869 @default.
- W4387150867 cites W4310027184 @default.
- W4387150867 cites W4319941077 @default.
- W4387150867 cites W4321374541 @default.
- W4387150867 cites W4322631683 @default.
- W4387150867 cites W981962622 @default.
- W4387150867 doi "https://doi.org/10.1016/j.fuel.2023.129906" @default.
- W4387150867 hasPublicationYear "2024" @default.
- W4387150867 type Work @default.
- W4387150867 citedByCount "0" @default.
- W4387150867 crossrefType "journal-article" @default.
- W4387150867 hasAuthorship W4387150867A5024381190 @default.
- W4387150867 hasAuthorship W4387150867A5029066280 @default.
- W4387150867 hasAuthorship W4387150867A5048738471 @default.
- W4387150867 hasConcept C104308156 @default.
- W4387150867 hasConcept C119599485 @default.
- W4387150867 hasConcept C121332964 @default.
- W4387150867 hasConcept C127313418 @default.
- W4387150867 hasConcept C127413603 @default.
- W4387150867 hasConcept C159985019 @default.
- W4387150867 hasConcept C165801399 @default.
- W4387150867 hasConcept C178790620 @default.
- W4387150867 hasConcept C185592680 @default.
- W4387150867 hasConcept C192562407 @default.
- W4387150867 hasConcept C2781060337 @default.
- W4387150867 hasConcept C39432304 @default.
- W4387150867 hasConcept C500300565 @default.
- W4387150867 hasConcept C548081761 @default.
- W4387150867 hasConcept C57879066 @default.
- W4387150867 hasConcept C59427239 @default.
- W4387150867 hasConcept C78762247 @default.
- W4387150867 hasConceptScore W4387150867C104308156 @default.
- W4387150867 hasConceptScore W4387150867C119599485 @default.
- W4387150867 hasConceptScore W4387150867C121332964 @default.