Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387150871> ?p ?o ?g. }
- W4387150871 endingPage "420" @default.
- W4387150871 startingPage "397" @default.
- W4387150871 abstract "Plantation forests provide critical ecosystem services and have experienced worldwide expansion during the past few decades. Accurate mapping of tree species through remote sensing is critical for managing plantation forests. The typical temporal behaviors and traits of tree species in satellite image time series (SITS) generate temporal and spectral features in multiple phenological stages that are critical to improve tree species mapping. However, the diverse input features, sequential relations and complex structures in SITS drastically increase the dimension and difficulty of spectral-temporal feature extraction, which challenges the capacity of many general classifiers not explicitly adapted for spectral-temporal learning. As a result, there is still a lack of a method that could automatically extract spectral-temporal features with high separability and regional adaptability from high-dimensional SITS for tree species mapping of plantation forests. Moreover, the effects of varying temporal resolution and feature combination on the plantation tree species mapping are under-explored. Here, we developed a multi-head attention-based method for automatically extracting spectral-temporal features with high separability based on a modified Transformer network (Transformer4SITS) for improved plantation tree species mapping. The end-to-end network model consists of a feature extraction module to learn deep spectral-temporal features from SITS and a fusion module to combine multiple features for improving mapping accuracy. We applied this method to two representative plantation forests in southern and northern China for tree species mapping. The results show that: (1) Transformer4SITS method could self-adaptively extract typical spectral-temporal features of key phenological stages (e.g., greenness rising and falling) from SITS, and achieved significantly improved accuracies by at most 15% in comparison with all four baseline methods (i.e., long short-term memory, harmonic analysis, time-weighted dynamic time warping, linear discriminant analysis); (2) time series with higher temporal resolution tended to produce more accurate species maps consistently across two sites, with their overall accuracies (OA) respectively increasing from 91.05% and 84.33% (60-day) to 94.88% and 88.72% (5-day), but the effect of high temporal resolution respectively leveled off around 90-day and 50-day resolution across two sites; (3) the mapping results using all available bands and two-band spectral indices outperformed the results using a subset of them, but with only modest increase in the accuracy (i.e., OA increased from 93.63% and 86.01% to 94.88% and 88.72%. This study thus provides a state-of-the-art deep learning-based method for improved tree species mapping, which is critical for sustainable management and biodiversity monitoring of plantation forests across large scales." @default.
- W4387150871 created "2023-09-29" @default.
- W4387150871 creator A5009738904 @default.
- W4387150871 creator A5022823173 @default.
- W4387150871 creator A5031490442 @default.
- W4387150871 creator A5047941464 @default.
- W4387150871 creator A5057033978 @default.
- W4387150871 creator A5075467316 @default.
- W4387150871 creator A5078746720 @default.
- W4387150871 creator A5081480445 @default.
- W4387150871 creator A5083710893 @default.
- W4387150871 creator A5085466660 @default.
- W4387150871 date "2023-10-01" @default.
- W4387150871 modified "2023-10-06" @default.
- W4387150871 title "A spectral-temporal constrained deep learning method for tree species mapping of plantation forests using time series Sentinel-2 imagery" @default.
- W4387150871 cites W1894641570 @default.
- W4387150871 cites W1966375248 @default.
- W4387150871 cites W1968718753 @default.
- W4387150871 cites W1974110440 @default.
- W4387150871 cites W1983523689 @default.
- W4387150871 cites W1983992248 @default.
- W4387150871 cites W1991361881 @default.
- W4387150871 cites W2007342648 @default.
- W4387150871 cites W2008950984 @default.
- W4387150871 cites W2036745212 @default.
- W4387150871 cites W2039830881 @default.
- W4387150871 cites W2055505446 @default.
- W4387150871 cites W2055922619 @default.
- W4387150871 cites W2056435747 @default.
- W4387150871 cites W2074854752 @default.
- W4387150871 cites W2101002853 @default.
- W4387150871 cites W2113410727 @default.
- W4387150871 cites W2117885119 @default.
- W4387150871 cites W2128160875 @default.
- W4387150871 cites W2160434086 @default.
- W4387150871 cites W2162698522 @default.
- W4387150871 cites W2288583194 @default.
- W4387150871 cites W2344186514 @default.
- W4387150871 cites W2417137833 @default.
- W4387150871 cites W2515306179 @default.
- W4387150871 cites W2604308675 @default.
- W4387150871 cites W2617056706 @default.
- W4387150871 cites W2737391801 @default.
- W4387150871 cites W2763287719 @default.
- W4387150871 cites W2767953525 @default.
- W4387150871 cites W2779279532 @default.
- W4387150871 cites W2788340823 @default.
- W4387150871 cites W2789758650 @default.
- W4387150871 cites W2789904909 @default.
- W4387150871 cites W2791720519 @default.
- W4387150871 cites W2802651079 @default.
- W4387150871 cites W2810275709 @default.
- W4387150871 cites W2811040116 @default.
- W4387150871 cites W2883925605 @default.
- W4387150871 cites W2884409695 @default.
- W4387150871 cites W2890443177 @default.
- W4387150871 cites W2900062227 @default.
- W4387150871 cites W2900217217 @default.
- W4387150871 cites W2900426894 @default.
- W4387150871 cites W2902998908 @default.
- W4387150871 cites W2903282641 @default.
- W4387150871 cites W2912077313 @default.
- W4387150871 cites W2914484644 @default.
- W4387150871 cites W2938025916 @default.
- W4387150871 cites W2944851425 @default.
- W4387150871 cites W2945897702 @default.
- W4387150871 cites W2947716040 @default.
- W4387150871 cites W2949351478 @default.
- W4387150871 cites W2954994501 @default.
- W4387150871 cites W2963374347 @default.
- W4387150871 cites W2968862935 @default.
- W4387150871 cites W2981308249 @default.
- W4387150871 cites W2981692395 @default.
- W4387150871 cites W2986750949 @default.
- W4387150871 cites W2988576146 @default.
- W4387150871 cites W2991032411 @default.
- W4387150871 cites W2991616716 @default.
- W4387150871 cites W3000080835 @default.
- W4387150871 cites W3035805339 @default.
- W4387150871 cites W3036016333 @default.
- W4387150871 cites W3037002701 @default.
- W4387150871 cites W3048194731 @default.
- W4387150871 cites W3049568724 @default.
- W4387150871 cites W3081143020 @default.
- W4387150871 cites W3093215896 @default.
- W4387150871 cites W3094080558 @default.
- W4387150871 cites W3101252928 @default.
- W4387150871 cites W3102564565 @default.
- W4387150871 cites W3132859298 @default.
- W4387150871 cites W3133307794 @default.
- W4387150871 cites W3166623178 @default.
- W4387150871 cites W3175001099 @default.
- W4387150871 cites W3185118158 @default.
- W4387150871 cites W3187276607 @default.
- W4387150871 cites W3190672799 @default.
- W4387150871 cites W3190941789 @default.
- W4387150871 cites W3196530826 @default.
- W4387150871 cites W3199869787 @default.