Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387156615> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4387156615 abstract "Large language models (LLMs) have become phenomenally surging, since 2018--two decades after introducing context-awareness into computing systems. Through taking into account the situations of ubiquitous devices, users and the societies, context-aware computing has enabled a wide spectrum of innovative applications, such as assisted living, location-based social network services and so on. To recognize contexts and make decisions for actions accordingly, various artificial intelligence technologies, such as Ontology and OWL, have been adopted as representations for context modeling and reasoning. Recently, with the rise of LLMs and their improved natural language understanding and reasoning capabilities, it has become feasible to model contexts using natural language and perform context reasoning by interacting with LLMs such as ChatGPT and GPT-4. In this tutorial, we demonstrate the use of texts, prompts, and autonomous agents (AutoAgents) that enable LLMs to perform context modeling and reasoning without requiring fine-tuning of the model. We organize and introduce works in the related field, and name this computing paradigm as the LLM-driven Context-aware Computing (LCaC). In the LCaC paradigm, users' requests, sensors reading data, and the command to actuators are supposed to be represented as texts. Given the text of users' request and sensor data, the AutoAgent models the context by prompting and sends to the LLM for context reasoning. LLM generates a plan of actions and responds to the AutoAgent, which later follows the action plan to foster context-awareness. To prove the concepts, we use two showcases--(1) operating a mobile z-arm in an apartment for assisted living, and (2) planning a trip and scheduling the itinerary in a context-aware and personalized manner." @default.
- W4387156615 created "2023-09-30" @default.
- W4387156615 creator A5027112658 @default.
- W4387156615 creator A5030951014 @default.
- W4387156615 creator A5045729966 @default.
- W4387156615 creator A5072308822 @default.
- W4387156615 creator A5080609124 @default.
- W4387156615 creator A5081254155 @default.
- W4387156615 date "2023-09-23" @default.
- W4387156615 modified "2023-09-30" @default.
- W4387156615 title "Natural Language based Context Modeling and Reasoning with LLMs: A Tutorial" @default.
- W4387156615 doi "https://doi.org/10.48550/arxiv.2309.15074" @default.
- W4387156615 hasPublicationYear "2023" @default.
- W4387156615 type Work @default.
- W4387156615 citedByCount "0" @default.
- W4387156615 crossrefType "posted-content" @default.
- W4387156615 hasAuthorship W4387156615A5027112658 @default.
- W4387156615 hasAuthorship W4387156615A5030951014 @default.
- W4387156615 hasAuthorship W4387156615A5045729966 @default.
- W4387156615 hasAuthorship W4387156615A5072308822 @default.
- W4387156615 hasAuthorship W4387156615A5080609124 @default.
- W4387156615 hasAuthorship W4387156615A5081254155 @default.
- W4387156615 hasBestOaLocation W43871566151 @default.
- W4387156615 hasConcept C107457646 @default.
- W4387156615 hasConcept C111472728 @default.
- W4387156615 hasConcept C121332964 @default.
- W4387156615 hasConcept C138885662 @default.
- W4387156615 hasConcept C151730666 @default.
- W4387156615 hasConcept C154945302 @default.
- W4387156615 hasConcept C172195944 @default.
- W4387156615 hasConcept C183322885 @default.
- W4387156615 hasConcept C195324797 @default.
- W4387156615 hasConcept C2522767166 @default.
- W4387156615 hasConcept C25810664 @default.
- W4387156615 hasConcept C2779343474 @default.
- W4387156615 hasConcept C2779439875 @default.
- W4387156615 hasConcept C2780791683 @default.
- W4387156615 hasConcept C2781238097 @default.
- W4387156615 hasConcept C41008148 @default.
- W4387156615 hasConcept C62520636 @default.
- W4387156615 hasConcept C86803240 @default.
- W4387156615 hasConceptScore W4387156615C107457646 @default.
- W4387156615 hasConceptScore W4387156615C111472728 @default.
- W4387156615 hasConceptScore W4387156615C121332964 @default.
- W4387156615 hasConceptScore W4387156615C138885662 @default.
- W4387156615 hasConceptScore W4387156615C151730666 @default.
- W4387156615 hasConceptScore W4387156615C154945302 @default.
- W4387156615 hasConceptScore W4387156615C172195944 @default.
- W4387156615 hasConceptScore W4387156615C183322885 @default.
- W4387156615 hasConceptScore W4387156615C195324797 @default.
- W4387156615 hasConceptScore W4387156615C2522767166 @default.
- W4387156615 hasConceptScore W4387156615C25810664 @default.
- W4387156615 hasConceptScore W4387156615C2779343474 @default.
- W4387156615 hasConceptScore W4387156615C2779439875 @default.
- W4387156615 hasConceptScore W4387156615C2780791683 @default.
- W4387156615 hasConceptScore W4387156615C2781238097 @default.
- W4387156615 hasConceptScore W4387156615C41008148 @default.
- W4387156615 hasConceptScore W4387156615C62520636 @default.
- W4387156615 hasConceptScore W4387156615C86803240 @default.
- W4387156615 hasLocation W43871566151 @default.
- W4387156615 hasOpenAccess W4387156615 @default.
- W4387156615 hasPrimaryLocation W43871566151 @default.
- W4387156615 hasRelatedWork W118236634 @default.
- W4387156615 hasRelatedWork W1504101963 @default.
- W4387156615 hasRelatedWork W1530555483 @default.
- W4387156615 hasRelatedWork W1985951810 @default.
- W4387156615 hasRelatedWork W1993147237 @default.
- W4387156615 hasRelatedWork W2082921928 @default.
- W4387156615 hasRelatedWork W2154188405 @default.
- W4387156615 hasRelatedWork W2992958052 @default.
- W4387156615 hasRelatedWork W3015063528 @default.
- W4387156615 hasRelatedWork W2172722921 @default.
- W4387156615 isParatext "false" @default.
- W4387156615 isRetracted "false" @default.
- W4387156615 workType "article" @default.