Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387156924> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4387156924 abstract "Human anatomy is the foundation of medical imaging and boasts one striking characteristic: its hierarchy in nature, exhibiting two intrinsic properties: (1) locality: each anatomical structure is morphologically distinct from the others; and (2) compositionality: each anatomical structure is an integrated part of a larger whole. We envision a foundation model for medical imaging that is consciously and purposefully developed upon this foundation to gain the capability of understanding human anatomy and to possess the fundamental properties of medical imaging. As our first step in realizing this vision towards foundation models in medical imaging, we devise a novel self-supervised learning (SSL) strategy that exploits the hierarchical nature of human anatomy. Our extensive experiments demonstrate that the SSL pretrained model, derived from our training strategy, not only outperforms state-of-the-art (SOTA) fully/self-supervised baselines but also enhances annotation efficiency, offering potential few-shot segmentation capabilities with performance improvements ranging from 9% to 30% for segmentation tasks compared to SSL baselines. This performance is attributed to the significance of anatomy comprehension via our learning strategy, which encapsulates the intrinsic attributes of anatomical structures-locality and compositionality-within the embedding space, yet overlooked in existing SSL methods. All code and pretrained models are available at https://github.com/JLiangLab/Eden." @default.
- W4387156924 created "2023-09-30" @default.
- W4387156924 creator A5040454904 @default.
- W4387156924 creator A5048713371 @default.
- W4387156924 creator A5088303506 @default.
- W4387156924 date "2023-09-26" @default.
- W4387156924 modified "2023-10-15" @default.
- W4387156924 title "Towards Foundation Models Learned from Anatomy in Medical Imaging via Self-Supervision" @default.
- W4387156924 doi "https://doi.org/10.48550/arxiv.2309.15358" @default.
- W4387156924 hasPublicationYear "2023" @default.
- W4387156924 type Work @default.
- W4387156924 citedByCount "0" @default.
- W4387156924 crossrefType "posted-content" @default.
- W4387156924 hasAuthorship W4387156924A5040454904 @default.
- W4387156924 hasAuthorship W4387156924A5048713371 @default.
- W4387156924 hasAuthorship W4387156924A5088303506 @default.
- W4387156924 hasBestOaLocation W43871569241 @default.
- W4387156924 hasConcept C103278499 @default.
- W4387156924 hasConcept C115961682 @default.
- W4387156924 hasConcept C121375916 @default.
- W4387156924 hasConcept C138885662 @default.
- W4387156924 hasConcept C154945302 @default.
- W4387156924 hasConcept C165696696 @default.
- W4387156924 hasConcept C166957645 @default.
- W4387156924 hasConcept C177264268 @default.
- W4387156924 hasConcept C199360897 @default.
- W4387156924 hasConcept C2776760102 @default.
- W4387156924 hasConcept C2779808786 @default.
- W4387156924 hasConcept C2780966255 @default.
- W4387156924 hasConcept C31601959 @default.
- W4387156924 hasConcept C38652104 @default.
- W4387156924 hasConcept C41008148 @default.
- W4387156924 hasConcept C41608201 @default.
- W4387156924 hasConcept C41895202 @default.
- W4387156924 hasConcept C89600930 @default.
- W4387156924 hasConcept C95457728 @default.
- W4387156924 hasConceptScore W4387156924C103278499 @default.
- W4387156924 hasConceptScore W4387156924C115961682 @default.
- W4387156924 hasConceptScore W4387156924C121375916 @default.
- W4387156924 hasConceptScore W4387156924C138885662 @default.
- W4387156924 hasConceptScore W4387156924C154945302 @default.
- W4387156924 hasConceptScore W4387156924C165696696 @default.
- W4387156924 hasConceptScore W4387156924C166957645 @default.
- W4387156924 hasConceptScore W4387156924C177264268 @default.
- W4387156924 hasConceptScore W4387156924C199360897 @default.
- W4387156924 hasConceptScore W4387156924C2776760102 @default.
- W4387156924 hasConceptScore W4387156924C2779808786 @default.
- W4387156924 hasConceptScore W4387156924C2780966255 @default.
- W4387156924 hasConceptScore W4387156924C31601959 @default.
- W4387156924 hasConceptScore W4387156924C38652104 @default.
- W4387156924 hasConceptScore W4387156924C41008148 @default.
- W4387156924 hasConceptScore W4387156924C41608201 @default.
- W4387156924 hasConceptScore W4387156924C41895202 @default.
- W4387156924 hasConceptScore W4387156924C89600930 @default.
- W4387156924 hasConceptScore W4387156924C95457728 @default.
- W4387156924 hasLocation W43871569241 @default.
- W4387156924 hasOpenAccess W4387156924 @default.
- W4387156924 hasPrimaryLocation W43871569241 @default.
- W4387156924 hasRelatedWork W2331043530 @default.
- W4387156924 hasRelatedWork W2363648756 @default.
- W4387156924 hasRelatedWork W2381880241 @default.
- W4387156924 hasRelatedWork W2383403914 @default.
- W4387156924 hasRelatedWork W2393933887 @default.
- W4387156924 hasRelatedWork W2589307556 @default.
- W4387156924 hasRelatedWork W2886384632 @default.
- W4387156924 hasRelatedWork W2997512100 @default.
- W4387156924 hasRelatedWork W3005905334 @default.
- W4387156924 hasRelatedWork W4287991469 @default.
- W4387156924 isParatext "false" @default.
- W4387156924 isRetracted "false" @default.
- W4387156924 workType "article" @default.