Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387157058> ?p ?o ?g. }
- W4387157058 abstract "Neoadjuvant chemotherapy (NACT) has become an essential component of the comprehensive treatment of cervical squamous cell carcinoma (CSCC). However, not all patients respond to chemotherapy due to individual differences in sensitivity and tolerance to chemotherapy drugs. Therefore, accurately predicting the sensitivity of CSCC patients to NACT was vital for individual chemotherapy. This study aims to construct a machine learning radiomics model based on magnetic resonance imaging (MRI) to assess its efficacy in predicting NACT susceptibility among CSCC patients.This study included 234 patients with CSCC from two hospitals, who were divided into a training set (n = 180), a testing set (n = 20), and an external validation set (n = 34). Manual radiomic features were extracted from transverse section MRI images, and feature selection was performed using the recursive feature elimination (RFE) method. A prediction model was then generated using three machine learning algorithms, namely logistic regression, random forest, and support vector machines (SVM), for predicting NACT susceptibility. The model's performance was assessed based on the area under the receiver operating characteristic curve (AUC), accuracy, and sensitivity.The SVM approach achieves the highest scores on both the testing set and the external validation set. In the testing set and external validation set, the AUC of the model was 0.88 and 0.764, and the accuracy was 0.90 and 0.853, the sensitivity was 0.93 and 0.962, respectively.Machine learning radiomics models based on MRI images have achieved satisfactory performance in predicting the sensitivity of NACT in CSCC patients with high accuracy and robustness, which has great significance for the treatment and personalized medicine of CSCC patients." @default.
- W4387157058 created "2023-09-30" @default.
- W4387157058 creator A5005606057 @default.
- W4387157058 creator A5005689510 @default.
- W4387157058 creator A5012911188 @default.
- W4387157058 creator A5021908670 @default.
- W4387157058 creator A5027727196 @default.
- W4387157058 creator A5029912033 @default.
- W4387157058 creator A5030775427 @default.
- W4387157058 creator A5035819009 @default.
- W4387157058 creator A5062027830 @default.
- W4387157058 creator A5062755510 @default.
- W4387157058 creator A5076952766 @default.
- W4387157058 creator A5079974353 @default.
- W4387157058 creator A5085712538 @default.
- W4387157058 date "2023-09-29" @default.
- W4387157058 modified "2023-09-30" @default.
- W4387157058 title "An <scp>MRI</scp>‐based machine learning radiomics can predict short‐term response to neoadjuvant chemotherapy in patients with cervical squamous cell carcinoma: A multicenter study" @default.
- W4387157058 cites W1564051716 @default.
- W4387157058 cites W2050593632 @default.
- W4387157058 cites W2052037862 @default.
- W4387157058 cites W2138944465 @default.
- W4387157058 cites W2373606074 @default.
- W4387157058 cites W2400050847 @default.
- W4387157058 cites W2808691880 @default.
- W4387157058 cites W2915540738 @default.
- W4387157058 cites W2920893311 @default.
- W4387157058 cites W2923943486 @default.
- W4387157058 cites W2944993023 @default.
- W4387157058 cites W2954017268 @default.
- W4387157058 cites W2963073866 @default.
- W4387157058 cites W2964439322 @default.
- W4387157058 cites W2970883657 @default.
- W4387157058 cites W2971323891 @default.
- W4387157058 cites W2987116990 @default.
- W4387157058 cites W3005156640 @default.
- W4387157058 cites W3006104185 @default.
- W4387157058 cites W3008751679 @default.
- W4387157058 cites W3010677946 @default.
- W4387157058 cites W3020884671 @default.
- W4387157058 cites W3094131523 @default.
- W4387157058 cites W3096150649 @default.
- W4387157058 cites W3125920489 @default.
- W4387157058 cites W3128646645 @default.
- W4387157058 cites W3136270220 @default.
- W4387157058 cites W3154664064 @default.
- W4387157058 cites W3164996527 @default.
- W4387157058 cites W3165500721 @default.
- W4387157058 cites W3207526740 @default.
- W4387157058 cites W3214368599 @default.
- W4387157058 cites W4205137082 @default.
- W4387157058 cites W4220667190 @default.
- W4387157058 cites W4220917149 @default.
- W4387157058 cites W4225285757 @default.
- W4387157058 cites W4280635607 @default.
- W4387157058 cites W4282048214 @default.
- W4387157058 cites W4284883449 @default.
- W4387157058 cites W4285058387 @default.
- W4387157058 cites W4308834895 @default.
- W4387157058 cites W4309668559 @default.
- W4387157058 cites W4311471872 @default.
- W4387157058 doi "https://doi.org/10.1002/cam4.6525" @default.
- W4387157058 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37772478" @default.
- W4387157058 hasPublicationYear "2023" @default.
- W4387157058 type Work @default.
- W4387157058 citedByCount "0" @default.
- W4387157058 crossrefType "journal-article" @default.
- W4387157058 hasAuthorship W4387157058A5005606057 @default.
- W4387157058 hasAuthorship W4387157058A5005689510 @default.
- W4387157058 hasAuthorship W4387157058A5012911188 @default.
- W4387157058 hasAuthorship W4387157058A5021908670 @default.
- W4387157058 hasAuthorship W4387157058A5027727196 @default.
- W4387157058 hasAuthorship W4387157058A5029912033 @default.
- W4387157058 hasAuthorship W4387157058A5030775427 @default.
- W4387157058 hasAuthorship W4387157058A5035819009 @default.
- W4387157058 hasAuthorship W4387157058A5062027830 @default.
- W4387157058 hasAuthorship W4387157058A5062755510 @default.
- W4387157058 hasAuthorship W4387157058A5076952766 @default.
- W4387157058 hasAuthorship W4387157058A5079974353 @default.
- W4387157058 hasAuthorship W4387157058A5085712538 @default.
- W4387157058 hasBestOaLocation W43871570581 @default.
- W4387157058 hasConcept C104317684 @default.
- W4387157058 hasConcept C119857082 @default.
- W4387157058 hasConcept C12267149 @default.
- W4387157058 hasConcept C126838900 @default.
- W4387157058 hasConcept C143409427 @default.
- W4387157058 hasConcept C148483581 @default.
- W4387157058 hasConcept C151956035 @default.
- W4387157058 hasConcept C154945302 @default.
- W4387157058 hasConcept C169258074 @default.
- W4387157058 hasConcept C169903167 @default.
- W4387157058 hasConcept C185592680 @default.
- W4387157058 hasConcept C27181475 @default.
- W4387157058 hasConcept C2778559731 @default.
- W4387157058 hasConcept C41008148 @default.
- W4387157058 hasConcept C55493867 @default.
- W4387157058 hasConcept C58471807 @default.
- W4387157058 hasConcept C63479239 @default.
- W4387157058 hasConcept C71924100 @default.
- W4387157058 hasConceptScore W4387157058C104317684 @default.