Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387158209> ?p ?o ?g. }
- W4387158209 endingPage "107100" @default.
- W4387158209 startingPage "107100" @default.
- W4387158209 abstract "In the forensic studies of painting masterpieces, the analysis of the support is of major importance. For plain weave fabrics, the densities of vertical and horizontal threads are used as main features, while angle deviations from the vertical and horizontal axis are also of help. These features can be studied locally through the canvas. In this work, deep learning is proposed as a tool to perform these local densities and angle studies. We trained the model with samples from 36 paintings by Velázquez, Rubens or Ribera, among others. The data preparation and augmentation are dealt with at a first stage of the pipeline. We then focus on the supervised segmentation of crossing points between threads. The U-Net with inception and Dice loss are presented as good choices for this task. Densities and angles are then estimated based on the segmented crossing points. We report test results of the analysis of a few canvases and a comparison with methods in the frequency domain, widely used in this problem. We concluded that this new approach successes in some cases where the frequency analysis tools fail, while improves the results in others. Besides, our proposal does not need the labeling of part of the to be processed image. As case studies, we apply this novel algorithm to the analysis of two pairs of canvases by Velázquez and Murillo, to conclude that the fabrics used came from the same roll." @default.
- W4387158209 created "2023-09-30" @default.
- W4387158209 creator A5036262774 @default.
- W4387158209 creator A5036960709 @default.
- W4387158209 creator A5059199581 @default.
- W4387158209 date "2023-11-01" @default.
- W4387158209 modified "2023-10-15" @default.
- W4387158209 title "Crossing points detection in plain weave for old paintings with deep learning" @default.
- W4387158209 cites W1507877522 @default.
- W4387158209 cites W1987202160 @default.
- W4387158209 cites W2017353467 @default.
- W4387158209 cites W2104763670 @default.
- W4387158209 cites W2108240927 @default.
- W4387158209 cites W2133059825 @default.
- W4387158209 cites W2158254630 @default.
- W4387158209 cites W2277078106 @default.
- W4387158209 cites W2617163296 @default.
- W4387158209 cites W2954996726 @default.
- W4387158209 cites W3015628063 @default.
- W4387158209 cites W3019559898 @default.
- W4387158209 cites W3112447751 @default.
- W4387158209 cites W3122285102 @default.
- W4387158209 cites W3200179091 @default.
- W4387158209 cites W4231305205 @default.
- W4387158209 cites W4281688409 @default.
- W4387158209 cites W4283585442 @default.
- W4387158209 cites W4284958772 @default.
- W4387158209 doi "https://doi.org/10.1016/j.engappai.2023.107100" @default.
- W4387158209 hasPublicationYear "2023" @default.
- W4387158209 type Work @default.
- W4387158209 citedByCount "0" @default.
- W4387158209 crossrefType "journal-article" @default.
- W4387158209 hasAuthorship W4387158209A5036262774 @default.
- W4387158209 hasAuthorship W4387158209A5036960709 @default.
- W4387158209 hasAuthorship W4387158209A5059199581 @default.
- W4387158209 hasBestOaLocation W43871582091 @default.
- W4387158209 hasConcept C108583219 @default.
- W4387158209 hasConcept C120665830 @default.
- W4387158209 hasConcept C121332964 @default.
- W4387158209 hasConcept C142362112 @default.
- W4387158209 hasConcept C153180895 @default.
- W4387158209 hasConcept C153349607 @default.
- W4387158209 hasConcept C154945302 @default.
- W4387158209 hasConcept C159985019 @default.
- W4387158209 hasConcept C162324750 @default.
- W4387158209 hasConcept C187736073 @default.
- W4387158209 hasConcept C192209626 @default.
- W4387158209 hasConcept C192562407 @default.
- W4387158209 hasConcept C199360897 @default.
- W4387158209 hasConcept C205783811 @default.
- W4387158209 hasConcept C2778787235 @default.
- W4387158209 hasConcept C2779978421 @default.
- W4387158209 hasConcept C2780451532 @default.
- W4387158209 hasConcept C31972630 @default.
- W4387158209 hasConcept C41008148 @default.
- W4387158209 hasConcept C43521106 @default.
- W4387158209 hasConcept C89600930 @default.
- W4387158209 hasConceptScore W4387158209C108583219 @default.
- W4387158209 hasConceptScore W4387158209C120665830 @default.
- W4387158209 hasConceptScore W4387158209C121332964 @default.
- W4387158209 hasConceptScore W4387158209C142362112 @default.
- W4387158209 hasConceptScore W4387158209C153180895 @default.
- W4387158209 hasConceptScore W4387158209C153349607 @default.
- W4387158209 hasConceptScore W4387158209C154945302 @default.
- W4387158209 hasConceptScore W4387158209C159985019 @default.
- W4387158209 hasConceptScore W4387158209C162324750 @default.
- W4387158209 hasConceptScore W4387158209C187736073 @default.
- W4387158209 hasConceptScore W4387158209C192209626 @default.
- W4387158209 hasConceptScore W4387158209C192562407 @default.
- W4387158209 hasConceptScore W4387158209C199360897 @default.
- W4387158209 hasConceptScore W4387158209C205783811 @default.
- W4387158209 hasConceptScore W4387158209C2778787235 @default.
- W4387158209 hasConceptScore W4387158209C2779978421 @default.
- W4387158209 hasConceptScore W4387158209C2780451532 @default.
- W4387158209 hasConceptScore W4387158209C31972630 @default.
- W4387158209 hasConceptScore W4387158209C41008148 @default.
- W4387158209 hasConceptScore W4387158209C43521106 @default.
- W4387158209 hasConceptScore W4387158209C89600930 @default.
- W4387158209 hasFunder F4320315062 @default.
- W4387158209 hasFunder F4320319605 @default.
- W4387158209 hasFunder F4320320300 @default.
- W4387158209 hasFunder F4320321595 @default.
- W4387158209 hasFunder F4320322930 @default.
- W4387158209 hasFunder F4320326754 @default.
- W4387158209 hasFunder F4320335322 @default.
- W4387158209 hasLocation W43871582091 @default.
- W4387158209 hasOpenAccess W4387158209 @default.
- W4387158209 hasPrimaryLocation W43871582091 @default.
- W4387158209 hasRelatedWork W1591565242 @default.
- W4387158209 hasRelatedWork W2233552742 @default.
- W4387158209 hasRelatedWork W2357187602 @default.
- W4387158209 hasRelatedWork W2369092230 @default.
- W4387158209 hasRelatedWork W2383951830 @default.
- W4387158209 hasRelatedWork W2389267382 @default.
- W4387158209 hasRelatedWork W2580687016 @default.
- W4387158209 hasRelatedWork W2886265999 @default.
- W4387158209 hasRelatedWork W2940819518 @default.
- W4387158209 hasRelatedWork W4315434538 @default.