Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387159414> ?p ?o ?g. }
- W4387159414 endingPage "167488" @default.
- W4387159414 startingPage "167488" @default.
- W4387159414 abstract "Soil carbon (C), nitrogen (N), and phosphorus (P) are required components to maintain ecosystem structure, function, and services. Accurate soil nutrient stoichiometry assessments are crucial for precisely managing agricultural and natural ecosystems. However, direct measurement and evaluation of soil characteristics can be costly and time-consuming. The development of statistical and machine learning-based methods for predicting soil C:N:P stoichiometry and microbial dynamics is of great significance. The objective of this study is to compare the performance of four machine learning models, i.e., support vector machine, random forest, extreme gradient boosting, and gradient boosting decision tree, in predicting soil C:N:P stoichiometry and net N mineralization rate and to evaluate their applicability to different agricultural land use types and climate zones. Our results showed that extreme gradient boosting (average R2 > 0.81, RMSE <16.39, RPD > 2.67) and gradient boosting decision tree (average R2 > 0.77, RMSE <16.40, RPD > 2.32) models performed the best in predicting C:N:P stoichiometry, demonstrating high accuracy and stability. Machine learning models produced higher accuracy in the vegetable field (except for C:N) than in the rice paddy field with average accuracy improvement of 42.9 %. The prediction performance in warm temperate and subtropical regions was inferior to cold regions. Feature importance assessment suggests that electrical conductivity, total N, and water-filled pore space may have significant predictive roles in the rice paddy field, while mean annual precipitation, total P, and silt content could be important factors in the vegetable field. When predicting the net N mineralization rate, soil texture may emerge as a crucial factor in the rice paddy field, whereas moisture content may play a key role in the vegetable field. Thus, machine learning models can be recommended to predict soil C:N:P stoichiometry and net N mineralization rate for precise agricultural practices." @default.
- W4387159414 created "2023-09-30" @default.
- W4387159414 creator A5008916749 @default.
- W4387159414 creator A5015083158 @default.
- W4387159414 creator A5015445018 @default.
- W4387159414 creator A5026463048 @default.
- W4387159414 creator A5026920281 @default.
- W4387159414 creator A5050124053 @default.
- W4387159414 creator A5077131395 @default.
- W4387159414 creator A5085976697 @default.
- W4387159414 date "2024-01-01" @default.
- W4387159414 modified "2023-10-11" @default.
- W4387159414 title "Machine learning algorithms realized soil stoichiometry prediction and its driver identification in intensive agroecosystems across a north-south transect of eastern China" @default.
- W4387159414 cites W1790346767 @default.
- W4387159414 cites W1977343925 @default.
- W4387159414 cites W1993073113 @default.
- W4387159414 cites W1997020557 @default.
- W4387159414 cites W2031185686 @default.
- W4387159414 cites W2041383474 @default.
- W4387159414 cites W2047680741 @default.
- W4387159414 cites W2067842168 @default.
- W4387159414 cites W2070493638 @default.
- W4387159414 cites W2122043751 @default.
- W4387159414 cites W2149554986 @default.
- W4387159414 cites W2150284769 @default.
- W4387159414 cites W2296675246 @default.
- W4387159414 cites W2492459478 @default.
- W4387159414 cites W2515566083 @default.
- W4387159414 cites W2594910122 @default.
- W4387159414 cites W2767257797 @default.
- W4387159414 cites W2769675690 @default.
- W4387159414 cites W2790675133 @default.
- W4387159414 cites W2796128018 @default.
- W4387159414 cites W2800105992 @default.
- W4387159414 cites W2883960284 @default.
- W4387159414 cites W2911964244 @default.
- W4387159414 cites W2969309273 @default.
- W4387159414 cites W2994172663 @default.
- W4387159414 cites W3000487497 @default.
- W4387159414 cites W3015057790 @default.
- W4387159414 cites W3024688198 @default.
- W4387159414 cites W3107408591 @default.
- W4387159414 cites W3111984916 @default.
- W4387159414 cites W3116533926 @default.
- W4387159414 cites W3128209972 @default.
- W4387159414 cites W3135720897 @default.
- W4387159414 cites W3153963714 @default.
- W4387159414 cites W3155353622 @default.
- W4387159414 cites W3203966885 @default.
- W4387159414 cites W3213355591 @default.
- W4387159414 cites W4200624423 @default.
- W4387159414 cites W4206340052 @default.
- W4387159414 cites W4206732656 @default.
- W4387159414 cites W4214928493 @default.
- W4387159414 cites W4224213566 @default.
- W4387159414 cites W4281944343 @default.
- W4387159414 cites W4285585464 @default.
- W4387159414 cites W4289340446 @default.
- W4387159414 cites W4293660602 @default.
- W4387159414 cites W4307906702 @default.
- W4387159414 cites W4310019159 @default.
- W4387159414 cites W4310075273 @default.
- W4387159414 cites W4319039384 @default.
- W4387159414 cites W4321768323 @default.
- W4387159414 cites W4361215335 @default.
- W4387159414 cites W4361256490 @default.
- W4387159414 cites W4362631573 @default.
- W4387159414 cites W4375858549 @default.
- W4387159414 cites W4376956455 @default.
- W4387159414 cites W4377030687 @default.
- W4387159414 cites W4379796797 @default.
- W4387159414 cites W67752540 @default.
- W4387159414 doi "https://doi.org/10.1016/j.scitotenv.2023.167488" @default.
- W4387159414 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37778551" @default.
- W4387159414 hasPublicationYear "2024" @default.
- W4387159414 type Work @default.
- W4387159414 citedByCount "0" @default.
- W4387159414 crossrefType "journal-article" @default.
- W4387159414 hasAuthorship W4387159414A5008916749 @default.
- W4387159414 hasAuthorship W4387159414A5015083158 @default.
- W4387159414 hasAuthorship W4387159414A5015445018 @default.
- W4387159414 hasAuthorship W4387159414A5026463048 @default.
- W4387159414 hasAuthorship W4387159414A5026920281 @default.
- W4387159414 hasAuthorship W4387159414A5050124053 @default.
- W4387159414 hasAuthorship W4387159414A5077131395 @default.
- W4387159414 hasAuthorship W4387159414A5085976697 @default.
- W4387159414 hasConcept C11413529 @default.
- W4387159414 hasConcept C119857082 @default.
- W4387159414 hasConcept C12267149 @default.
- W4387159414 hasConcept C154945302 @default.
- W4387159414 hasConcept C159390177 @default.
- W4387159414 hasConcept C159750122 @default.
- W4387159414 hasConcept C169258074 @default.
- W4387159414 hasConcept C33923547 @default.
- W4387159414 hasConcept C39432304 @default.
- W4387159414 hasConcept C39464130 @default.
- W4387159414 hasConcept C41008148 @default.
- W4387159414 hasConcept C70153297 @default.