Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387160717> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4387160717 endingPage "e393" @default.
- W4387160717 startingPage "e393" @default.
- W4387160717 abstract "Given the increasing number of treatment options for patients with localized prostate cancer (PCa), there is a need for biomarkers to aid in risk stratification. Specifically, novel biomarkers can aid in the identification of high-risk phenotypes among similar patients in traditional NCCN risk groupings. One promising area for development is using pre-treatment prostate MRI to identify imaging biomarkers to identify prostate cancer patients at highest risk for recurrence. We hypothesized that deep learning could be leveraged to identify imaging biomarkers of aggressive PCa from pre-treatment prostate MRIs.Our study included 1,020 patients treated at our institution between 2010-2022. Given pathologic extraprostatic extension (EPE) and seminal vesicle invasion (SVI) are associated with higher risk of treatment failure, we hypothesized that deep learning models which identified radiographic EPE and SVI would provide non-invasive imaging biomarkers associated with PCa prognosis. We trained two separate deep learning models using convolutional neural networks to predict SVI and EPE respectively. The model inputs were T2W prostate MRIs (n = 894) and models consisted of 8 convolutional layers. Dropout, L2 regularization, and data augmentation were used to improve model generalizability and reduce overfitting. Discriminatory ability of each model was measured using AUC on a blinded external test set of 221 patients. To assess the clinical utility of our imaging biomarkers, log-rank tests were used to evaluate biochemical free survival (BFS) for patients classified as high risk to patients classified as low risk. Biochemical failure was defined as post-treatment PSA >0.1 for patients who underwent radical prostatectomy (RP) or PSA >2ng/ml above nadir for patients receiving radiation therapy.Within our cohort of 1,020 patients the median age was 66 with a median follow up of 4 years. 49.3% (n = 503) underwent RP and 50.7% (n = 517) received EBRT. 4% (n = 41) were low risk, 62.4% (n = 636) were intermediate risk, and 33% (n = 337) were high risk based on NCCN criteria. Deep learning models showed good discriminatory ability for both EPE (AUC 0.66) and SVI (AUC 0.74). Both imaging biomarkers showed prognostic ability to identify high risk prostate phenotypes. Patients deemed high risk based on EPE classifier had worse BFS (median 5 vs 9 years, p<.001). Similarly, patients classified as high risk based on SVI also showed worse BFS (median 5 vs 9 years, p = 0.024). Among intermediate risk patients, EPE biomarker showed an ability to identify high risk phenotypes (median 6 vs 9 years, p = 0.024).Deep learning classifiers of prostate MRIs demonstrated the ability to stratify high-risk prostate cancer phenotypes beyond traditional risk paradigms. Imaging biomarkers represent a non-invasive method to help aid in the personalization of treatment for patients with localized prostate cancer and identify patients who potentially require treatment escalation." @default.
- W4387160717 created "2023-09-30" @default.
- W4387160717 creator A5010021088 @default.
- W4387160717 creator A5027831083 @default.
- W4387160717 creator A5030508311 @default.
- W4387160717 creator A5044609003 @default.
- W4387160717 creator A5090776935 @default.
- W4387160717 date "2023-10-01" @default.
- W4387160717 modified "2023-10-13" @default.
- W4387160717 title "Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning" @default.
- W4387160717 doi "https://doi.org/10.1016/j.ijrobp.2023.06.1517" @default.
- W4387160717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37785320" @default.
- W4387160717 hasPublicationYear "2023" @default.
- W4387160717 type Work @default.
- W4387160717 citedByCount "0" @default.
- W4387160717 crossrefType "journal-article" @default.
- W4387160717 hasAuthorship W4387160717A5010021088 @default.
- W4387160717 hasAuthorship W4387160717A5027831083 @default.
- W4387160717 hasAuthorship W4387160717A5030508311 @default.
- W4387160717 hasAuthorship W4387160717A5044609003 @default.
- W4387160717 hasAuthorship W4387160717A5090776935 @default.
- W4387160717 hasConcept C105795698 @default.
- W4387160717 hasConcept C121608353 @default.
- W4387160717 hasConcept C126322002 @default.
- W4387160717 hasConcept C126838900 @default.
- W4387160717 hasConcept C143409427 @default.
- W4387160717 hasConcept C143998085 @default.
- W4387160717 hasConcept C154945302 @default.
- W4387160717 hasConcept C27158222 @default.
- W4387160717 hasConcept C2776235491 @default.
- W4387160717 hasConcept C2780192828 @default.
- W4387160717 hasConcept C33923547 @default.
- W4387160717 hasConcept C41008148 @default.
- W4387160717 hasConcept C71924100 @default.
- W4387160717 hasConcept C81363708 @default.
- W4387160717 hasConceptScore W4387160717C105795698 @default.
- W4387160717 hasConceptScore W4387160717C121608353 @default.
- W4387160717 hasConceptScore W4387160717C126322002 @default.
- W4387160717 hasConceptScore W4387160717C126838900 @default.
- W4387160717 hasConceptScore W4387160717C143409427 @default.
- W4387160717 hasConceptScore W4387160717C143998085 @default.
- W4387160717 hasConceptScore W4387160717C154945302 @default.
- W4387160717 hasConceptScore W4387160717C27158222 @default.
- W4387160717 hasConceptScore W4387160717C2776235491 @default.
- W4387160717 hasConceptScore W4387160717C2780192828 @default.
- W4387160717 hasConceptScore W4387160717C33923547 @default.
- W4387160717 hasConceptScore W4387160717C41008148 @default.
- W4387160717 hasConceptScore W4387160717C71924100 @default.
- W4387160717 hasConceptScore W4387160717C81363708 @default.
- W4387160717 hasIssue "2" @default.
- W4387160717 hasLocation W43871607171 @default.
- W4387160717 hasLocation W43871607172 @default.
- W4387160717 hasOpenAccess W4387160717 @default.
- W4387160717 hasPrimaryLocation W43871607171 @default.
- W4387160717 hasRelatedWork W1980245127 @default.
- W4387160717 hasRelatedWork W2064643060 @default.
- W4387160717 hasRelatedWork W2088520467 @default.
- W4387160717 hasRelatedWork W2112204372 @default.
- W4387160717 hasRelatedWork W2410191098 @default.
- W4387160717 hasRelatedWork W2413759219 @default.
- W4387160717 hasRelatedWork W2599589207 @default.
- W4387160717 hasRelatedWork W3005513856 @default.
- W4387160717 hasRelatedWork W3166118201 @default.
- W4387160717 hasRelatedWork W4377224369 @default.
- W4387160717 hasVolume "117" @default.
- W4387160717 isParatext "false" @default.
- W4387160717 isRetracted "false" @default.
- W4387160717 workType "article" @default.