Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387160832> ?p ?o ?g. }
- W4387160832 endingPage "455304" @default.
- W4387160832 startingPage "455304" @default.
- W4387160832 abstract "Abstract Associative memories are devices storing information that can be fully retrieved given partial disclosure of it. We examine a toy model of associative memory and the ultimate limitations to which it is subjected within the framework of general probabilistic theories (GPTs), which represent the most general class of physical theories satisfying some basic operational axioms. We ask ourselves how large the dimension of a GPT should be so that it can accommodate 2 m states with the property that any N of them are perfectly distinguishable. Call <?CDATA $d(N,m)$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>d</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:math> the minimal such dimension. Invoking an old result by Danzer and Grünbaum, we prove that <?CDATA $d(2,m) = m+1$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>d</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:math> , to be compared with <?CDATA $O(2^m)$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:math> when the GPT is required to be either classical or quantum. This yields an example of a task where GPTs outperform both classical and quantum theory exponentially. More generally, we resolve the case of fixed N and asymptotically large m , proving that <?CDATA $d(N,m) unicode{x2A7D} m^{1+o_N(1)}$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>d</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mtext>⩽</mml:mtext> <mml:msup> <mml:mi>m</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>o</mml:mi> <mml:mi>N</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msup> </mml:math> (as <?CDATA $mtoinfty$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>m</mml:mi> <mml:mo stretchy=false>→</mml:mo> <mml:mi mathvariant=normal>∞</mml:mi> </mml:math> ) for every <?CDATA $Nunicode{x2A7E} 2$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mi>N</mml:mi> <mml:mtext>⩾</mml:mtext> <mml:mn>2</mml:mn> </mml:math> , which yields again an exponential improvement over classical and quantum theories. Finally, we develop a numerical approach to the general problem of finding the largest N -wise mutually distinguishable set for a given GPT, which can be seen as an instance of the maximum clique problem on N -regular hypergraphs." @default.
- W4387160832 created "2023-09-30" @default.
- W4387160832 creator A5004340527 @default.
- W4387160832 creator A5041655532 @default.
- W4387160832 creator A5052736954 @default.
- W4387160832 date "2023-10-13" @default.
- W4387160832 modified "2023-10-15" @default.
- W4387160832 title "A post-quantum associative memory" @default.
- W4387160832 cites W1488238422 @default.
- W4387160832 cites W1974959172 @default.
- W4387160832 cites W1991060246 @default.
- W4387160832 cites W1992048503 @default.
- W4387160832 cites W1993765178 @default.
- W4387160832 cites W1993864248 @default.
- W4387160832 cites W1998660432 @default.
- W4387160832 cites W2002643080 @default.
- W4387160832 cites W2007167199 @default.
- W4387160832 cites W2014283062 @default.
- W4387160832 cites W2016990905 @default.
- W4387160832 cites W2017492470 @default.
- W4387160832 cites W2026320281 @default.
- W4387160832 cites W2030859488 @default.
- W4387160832 cites W2032268667 @default.
- W4387160832 cites W2034920898 @default.
- W4387160832 cites W2037016941 @default.
- W4387160832 cites W2037035881 @default.
- W4387160832 cites W2040870895 @default.
- W4387160832 cites W2041288774 @default.
- W4387160832 cites W2042457049 @default.
- W4387160832 cites W2068617151 @default.
- W4387160832 cites W2093704631 @default.
- W4387160832 cites W2113235349 @default.
- W4387160832 cites W2128084896 @default.
- W4387160832 cites W2155978818 @default.
- W4387160832 cites W2401610261 @default.
- W4387160832 cites W2473343633 @default.
- W4387160832 cites W2768516475 @default.
- W4387160832 cites W2786363403 @default.
- W4387160832 cites W2794850800 @default.
- W4387160832 cites W2892389740 @default.
- W4387160832 cites W2892957130 @default.
- W4387160832 cites W2930677246 @default.
- W4387160832 cites W2963573879 @default.
- W4387160832 cites W2964334924 @default.
- W4387160832 cites W2973028158 @default.
- W4387160832 cites W3015613514 @default.
- W4387160832 cites W3030257867 @default.
- W4387160832 cites W3037737784 @default.
- W4387160832 cites W3046691040 @default.
- W4387160832 cites W3098762720 @default.
- W4387160832 cites W3100456273 @default.
- W4387160832 cites W3100800004 @default.
- W4387160832 cites W3101729930 @default.
- W4387160832 cites W3101802181 @default.
- W4387160832 cites W3135669562 @default.
- W4387160832 cites W3148229451 @default.
- W4387160832 cites W3163420609 @default.
- W4387160832 cites W3188877029 @default.
- W4387160832 cites W4229055810 @default.
- W4387160832 cites W4386184997 @default.
- W4387160832 cites W4386189532 @default.
- W4387160832 doi "https://doi.org/10.1088/1751-8121/acfeb7" @default.
- W4387160832 hasPublicationYear "2023" @default.
- W4387160832 type Work @default.
- W4387160832 citedByCount "0" @default.
- W4387160832 crossrefType "journal-article" @default.
- W4387160832 hasAuthorship W4387160832A5004340527 @default.
- W4387160832 hasAuthorship W4387160832A5041655532 @default.
- W4387160832 hasAuthorship W4387160832A5052736954 @default.
- W4387160832 hasBestOaLocation W43871608321 @default.
- W4387160832 hasConcept C11413529 @default.
- W4387160832 hasConcept C114614502 @default.
- W4387160832 hasConcept C154945302 @default.
- W4387160832 hasConcept C33676613 @default.
- W4387160832 hasConcept C33923547 @default.
- W4387160832 hasConcept C41008148 @default.
- W4387160832 hasConceptScore W4387160832C11413529 @default.
- W4387160832 hasConceptScore W4387160832C114614502 @default.
- W4387160832 hasConceptScore W4387160832C154945302 @default.
- W4387160832 hasConceptScore W4387160832C33676613 @default.
- W4387160832 hasConceptScore W4387160832C33923547 @default.
- W4387160832 hasConceptScore W4387160832C41008148 @default.
- W4387160832 hasFunder F4320308269 @default.
- W4387160832 hasFunder F4320311357 @default.
- W4387160832 hasIssue "45" @default.
- W4387160832 hasLocation W43871608321 @default.
- W4387160832 hasOpenAccess W4387160832 @default.
- W4387160832 hasPrimaryLocation W43871608321 @default.
- W4387160832 hasRelatedWork W2051487156 @default.
- W4387160832 hasRelatedWork W2073681303 @default.
- W4387160832 hasRelatedWork W2317200988 @default.
- W4387160832 hasRelatedWork W2350741829 @default.
- W4387160832 hasRelatedWork W2358668433 @default.
- W4387160832 hasRelatedWork W2376932109 @default.
- W4387160832 hasRelatedWork W2382290278 @default.
- W4387160832 hasRelatedWork W2390279801 @default.
- W4387160832 hasRelatedWork W2748952813 @default.
- W4387160832 hasRelatedWork W2899084033 @default.