Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387161451> ?p ?o ?g. }
- W4387161451 endingPage "110997" @default.
- W4387161451 startingPage "110997" @default.
- W4387161451 abstract "The utility of semantic change detection in myriad change scenarios has garnered considerable attention in contemporary research; however, its applicability in monitoring alterations in wetland ecosystems remains incompletely elucidated. To surmount the constraints associated with binary change detection methodologies—chiefly their insufficiency in the extraction of bi-temporal attributes—we introduced the Bi-Temporal Semantic Reasoning UNet++ (Bi-SRUNet++) algorithm. This algorithm leverages the architectural strengths of UNet++ as its foundational network to precisely delineate features pertinent to multi-class change detection. As a preliminary step, the study focused on the Dongting Lake wetland in China and conducted an analysis of feature trends predicated upon the monthly Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI), as derived from Landsat 8 data spanning 2021–2022. Subsequently, the optimal temporal phases for change detection were ascertained through differential analyses between NDWI and NDVI metrics. Implementing the Bi-SRUNet++ algorithm on a pair of Sentinel-2 images, captured during the optimal phases, yielded augmented change information. Comparative evaluations reveal that the Bi-SRUNet++ algorithm, conceptualized on the framework of Bi-Temporal Semantic Reasoning Network (Bi-SRNet), surpasses the performance indices of its counterpart Semantic Segmentation and Change Detection Late Fusion (SSCD-l). Furthermore, the incorporation of the UNet++ backbone network amplifies the algorithm's capacity for semantic feature extraction, thereby enhancing the efficacy of Bi-SRUNet++ in wetland change detection. The analysis divulges that the total altered area of Dongting Lake during the 2021–2022 period amounts to 1187.97 km2, comprising a water loss of 1186.16 km2, a 715.34 km2 transformation into vegetation, and a conversion of 469.96 km2 into mudflats. The codes and partial dataset in this paper are available at: https://github.com/vivianmiumiu/Bi-SRUNetplusplus-for-SCD." @default.
- W4387161451 created "2023-09-30" @default.
- W4387161451 creator A5041790532 @default.
- W4387161451 creator A5052414408 @default.
- W4387161451 creator A5065763596 @default.
- W4387161451 creator A5072580832 @default.
- W4387161451 creator A5074140059 @default.
- W4387161451 creator A5081564636 @default.
- W4387161451 creator A5089872665 @default.
- W4387161451 date "2023-11-01" @default.
- W4387161451 modified "2023-10-16" @default.
- W4387161451 title "A new change detection method for wetlands based on Bi-Temporal Semantic Reasoning UNet++ in Dongting Lake, China" @default.
- W4387161451 cites W1549187668 @default.
- W4387161451 cites W1982206826 @default.
- W4387161451 cites W1998731741 @default.
- W4387161451 cites W2025828030 @default.
- W4387161451 cites W2046404534 @default.
- W4387161451 cites W2051214985 @default.
- W4387161451 cites W2077509829 @default.
- W4387161451 cites W2104374858 @default.
- W4387161451 cites W2112796928 @default.
- W4387161451 cites W2132849292 @default.
- W4387161451 cites W2153989276 @default.
- W4387161451 cites W2160314638 @default.
- W4387161451 cites W2315716251 @default.
- W4387161451 cites W235223780 @default.
- W4387161451 cites W2373798623 @default.
- W4387161451 cites W2395611524 @default.
- W4387161451 cites W2789882114 @default.
- W4387161451 cites W2898947732 @default.
- W4387161451 cites W2912538417 @default.
- W4387161451 cites W2996290406 @default.
- W4387161451 cites W3009961211 @default.
- W4387161451 cites W3013016869 @default.
- W4387161451 cites W3017373444 @default.
- W4387161451 cites W3021610157 @default.
- W4387161451 cites W3022964465 @default.
- W4387161451 cites W3027225766 @default.
- W4387161451 cites W3030314942 @default.
- W4387161451 cites W3037640242 @default.
- W4387161451 cites W3037770432 @default.
- W4387161451 cites W3044507136 @default.
- W4387161451 cites W3082490771 @default.
- W4387161451 cites W3099831940 @default.
- W4387161451 cites W3101676849 @default.
- W4387161451 cites W3107688177 @default.
- W4387161451 cites W3166921881 @default.
- W4387161451 cites W4303968612 @default.
- W4387161451 cites W4308039940 @default.
- W4387161451 cites W4311763536 @default.
- W4387161451 doi "https://doi.org/10.1016/j.ecolind.2023.110997" @default.
- W4387161451 hasPublicationYear "2023" @default.
- W4387161451 type Work @default.
- W4387161451 citedByCount "0" @default.
- W4387161451 crossrefType "journal-article" @default.
- W4387161451 hasAuthorship W4387161451A5041790532 @default.
- W4387161451 hasAuthorship W4387161451A5052414408 @default.
- W4387161451 hasAuthorship W4387161451A5065763596 @default.
- W4387161451 hasAuthorship W4387161451A5072580832 @default.
- W4387161451 hasAuthorship W4387161451A5074140059 @default.
- W4387161451 hasAuthorship W4387161451A5081564636 @default.
- W4387161451 hasAuthorship W4387161451A5089872665 @default.
- W4387161451 hasBestOaLocation W43871614511 @default.
- W4387161451 hasConcept C124101348 @default.
- W4387161451 hasConcept C132651083 @default.
- W4387161451 hasConcept C138885662 @default.
- W4387161451 hasConcept C153180895 @default.
- W4387161451 hasConcept C1549246 @default.
- W4387161451 hasConcept C154945302 @default.
- W4387161451 hasConcept C184337299 @default.
- W4387161451 hasConcept C18903297 @default.
- W4387161451 hasConcept C199360897 @default.
- W4387161451 hasConcept C203595873 @default.
- W4387161451 hasConcept C205649164 @default.
- W4387161451 hasConcept C2776401178 @default.
- W4387161451 hasConcept C2781122975 @default.
- W4387161451 hasConcept C36391188 @default.
- W4387161451 hasConcept C41008148 @default.
- W4387161451 hasConcept C41895202 @default.
- W4387161451 hasConcept C52622490 @default.
- W4387161451 hasConcept C62649853 @default.
- W4387161451 hasConcept C67715294 @default.
- W4387161451 hasConcept C86803240 @default.
- W4387161451 hasConcept C89600930 @default.
- W4387161451 hasConceptScore W4387161451C124101348 @default.
- W4387161451 hasConceptScore W4387161451C132651083 @default.
- W4387161451 hasConceptScore W4387161451C138885662 @default.
- W4387161451 hasConceptScore W4387161451C153180895 @default.
- W4387161451 hasConceptScore W4387161451C1549246 @default.
- W4387161451 hasConceptScore W4387161451C154945302 @default.
- W4387161451 hasConceptScore W4387161451C184337299 @default.
- W4387161451 hasConceptScore W4387161451C18903297 @default.
- W4387161451 hasConceptScore W4387161451C199360897 @default.
- W4387161451 hasConceptScore W4387161451C203595873 @default.
- W4387161451 hasConceptScore W4387161451C205649164 @default.
- W4387161451 hasConceptScore W4387161451C2776401178 @default.
- W4387161451 hasConceptScore W4387161451C2781122975 @default.
- W4387161451 hasConceptScore W4387161451C36391188 @default.