Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387161878> ?p ?o ?g. }
- W4387161878 endingPage "335" @default.
- W4387161878 startingPage "307" @default.
- W4387161878 abstract "In this chapter, we consider two types of scenarios in inverse scattering problems, where we follow the treatment in Blåsten et al. (SIAM J Math Analy 53(4), 3801–3837, 2021). The first one is concerned with radiationless or non-radiating monochromatic sources, and the other one is concerned with non-radiating waves that impinge against a certain given scatterer consisting of an inhomogeneous index of refraction. In this chapter, we show that such invisible objects have certain geometrical properties. This allows us to classify radiating sources and incident waves that are always radiating for scatterers. Moreover, they also help us to provide unique determination results for a longstanding inverse scattering problem in certain scenarios of practical importance. The second one is concerned with geometrical structure of transmission eigenfunctions at highly curved point. First, we provide a relationship among the value of the transmission eigenfunction, the diameter of the domain, and the underlying refractive index, which indicates that if the domain is sufficiently small, then the transmission eigenfunction is nearly vanishing. Then we further localize and geometrize this “smallness” result. Briefly, interior transmission eigenfunctions must be nearly vanishing at a high-curvature point on the boundary. Moreover, the higher the curvature, the smaller the eigenfunction must be at the high-curvature point. This nearly vanishing behavior readily implies that as long as the shape of a scatterer possesses a highly curved part, then it scatters every incident wave field nontrivially unless the wave is vanishingly small at the highly curved part. Furthermore, we give uniqueness results for Schiffer’s problem in determining the support of an active source or an inhomogeneous medium with a single far-field pattern in certain scenarios of practical interest. These are the unique determination results for Schiffer’s problem concerning scatterers with smooth shapes. The corresponding uniqueness result on Calderón’s inverse inclusion problem with smooth shapes by a single partial boundary measurement can be found in Liu et al. (On Calderón’s inverse inclusion problem with smooth shapes by a single partial boundary measurement, arXiv:2006.10586)." @default.
- W4387161878 created "2023-09-30" @default.
- W4387161878 creator A5009395387 @default.
- W4387161878 creator A5025082141 @default.
- W4387161878 date "2023-01-01" @default.
- W4387161878 modified "2023-09-30" @default.
- W4387161878 title "Geometric Properties of Helmholtz’s Transmission Eigenfunctions Induced by Curvatures and Applications" @default.
- W4387161878 cites W175719039 @default.
- W4387161878 cites W1884845041 @default.
- W4387161878 cites W1967993294 @default.
- W4387161878 cites W1968702268 @default.
- W4387161878 cites W1970100894 @default.
- W4387161878 cites W1970564008 @default.
- W4387161878 cites W1971870342 @default.
- W4387161878 cites W1979258641 @default.
- W4387161878 cites W1984716240 @default.
- W4387161878 cites W1989886107 @default.
- W4387161878 cites W1991625591 @default.
- W4387161878 cites W1992657749 @default.
- W4387161878 cites W2000528098 @default.
- W4387161878 cites W2004084943 @default.
- W4387161878 cites W2020695975 @default.
- W4387161878 cites W2027910719 @default.
- W4387161878 cites W2032554443 @default.
- W4387161878 cites W2033969794 @default.
- W4387161878 cites W2035664637 @default.
- W4387161878 cites W2041192764 @default.
- W4387161878 cites W2048538424 @default.
- W4387161878 cites W2049176462 @default.
- W4387161878 cites W2049692977 @default.
- W4387161878 cites W2058875971 @default.
- W4387161878 cites W2066776993 @default.
- W4387161878 cites W2079560074 @default.
- W4387161878 cites W2089343106 @default.
- W4387161878 cites W2092764694 @default.
- W4387161878 cites W2141545885 @default.
- W4387161878 cites W2227130160 @default.
- W4387161878 cites W2309356035 @default.
- W4387161878 cites W2488032024 @default.
- W4387161878 cites W2499489400 @default.
- W4387161878 cites W2585160151 @default.
- W4387161878 cites W2801692529 @default.
- W4387161878 cites W2951348271 @default.
- W4387161878 cites W2963643321 @default.
- W4387161878 cites W2964019772 @default.
- W4387161878 cites W3027830594 @default.
- W4387161878 cites W3099973697 @default.
- W4387161878 cites W3103319355 @default.
- W4387161878 cites W3120985700 @default.
- W4387161878 cites W3175992053 @default.
- W4387161878 cites W3179305408 @default.
- W4387161878 cites W4237085618 @default.
- W4387161878 cites W4245515027 @default.
- W4387161878 cites W4288652121 @default.
- W4387161878 cites W4293106097 @default.
- W4387161878 doi "https://doi.org/10.1007/978-3-031-34615-6_11" @default.
- W4387161878 hasPublicationYear "2023" @default.
- W4387161878 type Work @default.
- W4387161878 citedByCount "0" @default.
- W4387161878 crossrefType "book-chapter" @default.
- W4387161878 hasAuthorship W4387161878A5009395387 @default.
- W4387161878 hasAuthorship W4387161878A5025082141 @default.
- W4387161878 hasConcept C119599485 @default.
- W4387161878 hasConcept C120665830 @default.
- W4387161878 hasConcept C121332964 @default.
- W4387161878 hasConcept C127413603 @default.
- W4387161878 hasConcept C128803854 @default.
- W4387161878 hasConcept C134306372 @default.
- W4387161878 hasConcept C158693339 @default.
- W4387161878 hasConcept C182310444 @default.
- W4387161878 hasConcept C18591234 @default.
- W4387161878 hasConcept C191486275 @default.
- W4387161878 hasConcept C195065555 @default.
- W4387161878 hasConcept C207467116 @default.
- W4387161878 hasConcept C2524010 @default.
- W4387161878 hasConcept C2777021972 @default.
- W4387161878 hasConcept C33923547 @default.
- W4387161878 hasConcept C36503486 @default.
- W4387161878 hasConcept C62520636 @default.
- W4387161878 hasConcept C761482 @default.
- W4387161878 hasConceptScore W4387161878C119599485 @default.
- W4387161878 hasConceptScore W4387161878C120665830 @default.
- W4387161878 hasConceptScore W4387161878C121332964 @default.
- W4387161878 hasConceptScore W4387161878C127413603 @default.
- W4387161878 hasConceptScore W4387161878C128803854 @default.
- W4387161878 hasConceptScore W4387161878C134306372 @default.
- W4387161878 hasConceptScore W4387161878C158693339 @default.
- W4387161878 hasConceptScore W4387161878C182310444 @default.
- W4387161878 hasConceptScore W4387161878C18591234 @default.
- W4387161878 hasConceptScore W4387161878C191486275 @default.
- W4387161878 hasConceptScore W4387161878C195065555 @default.
- W4387161878 hasConceptScore W4387161878C207467116 @default.
- W4387161878 hasConceptScore W4387161878C2524010 @default.
- W4387161878 hasConceptScore W4387161878C2777021972 @default.
- W4387161878 hasConceptScore W4387161878C33923547 @default.
- W4387161878 hasConceptScore W4387161878C36503486 @default.
- W4387161878 hasConceptScore W4387161878C62520636 @default.
- W4387161878 hasConceptScore W4387161878C761482 @default.