Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387162020> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387162020 abstract "Information can be found and shared through social media effectively and quickly. One of the most widely used social media is Twitter. Any information shared on social media is not always true. With millions of social media users, the platform cannot be separated from disseminating information whose truth is uncertain. This has a negative impact on society because it can increase people's distrust of information circulating on social media. To overcome this problem, This research propose system that can detect hoax information on social media using deep learning. This research focuses on detecting hoaxes using the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) methods using a dataset from Twitter of 25.325 data. To obtain optimum results, this study utilizes Feature Expansion in the form of GloVe (Global Vector) and Feature Extraction with TF-IDF (Term Frequency-Inverse Document Frequency). The uniqueness of this research lies in the combined application of TF-IDF feature extraction with GloVe feature expansion using CNN and RNN deep learning methods. The results of this study prove that the hoax detection system, by applying a combination of extraction feature with expansion features, can increase the accuracy value up to 95.09% in the CNN classification method, and in the RNN classification method, it has an accuracy of 95.12%." @default.
- W4387162020 created "2023-09-30" @default.
- W4387162020 creator A5023888994 @default.
- W4387162020 creator A5092965164 @default.
- W4387162020 date "2023-08-23" @default.
- W4387162020 modified "2023-09-30" @default.
- W4387162020 title "Fake News (Hoax) Detection on Social Media Using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) Methods" @default.
- W4387162020 cites W2762776925 @default.
- W4387162020 cites W2926691444 @default.
- W4387162020 cites W2999718538 @default.
- W4387162020 cites W3001895040 @default.
- W4387162020 cites W3007083472 @default.
- W4387162020 cites W3021758100 @default.
- W4387162020 cites W3042780833 @default.
- W4387162020 cites W3057439119 @default.
- W4387162020 cites W3081246177 @default.
- W4387162020 cites W3164527999 @default.
- W4387162020 cites W3176894272 @default.
- W4387162020 cites W3197616150 @default.
- W4387162020 cites W3208159610 @default.
- W4387162020 cites W4214951950 @default.
- W4387162020 doi "https://doi.org/10.1109/icoict58202.2023.10262617" @default.
- W4387162020 hasPublicationYear "2023" @default.
- W4387162020 type Work @default.
- W4387162020 citedByCount "0" @default.
- W4387162020 crossrefType "proceedings-article" @default.
- W4387162020 hasAuthorship W4387162020A5023888994 @default.
- W4387162020 hasAuthorship W4387162020A5092965164 @default.
- W4387162020 hasConcept C119857082 @default.
- W4387162020 hasConcept C136764020 @default.
- W4387162020 hasConcept C138885662 @default.
- W4387162020 hasConcept C142724271 @default.
- W4387162020 hasConcept C147168706 @default.
- W4387162020 hasConcept C153180895 @default.
- W4387162020 hasConcept C154945302 @default.
- W4387162020 hasConcept C17744445 @default.
- W4387162020 hasConcept C199539241 @default.
- W4387162020 hasConcept C204787440 @default.
- W4387162020 hasConcept C2776401178 @default.
- W4387162020 hasConcept C2778321746 @default.
- W4387162020 hasConcept C35361118 @default.
- W4387162020 hasConcept C41008148 @default.
- W4387162020 hasConcept C41895202 @default.
- W4387162020 hasConcept C50644808 @default.
- W4387162020 hasConcept C518677369 @default.
- W4387162020 hasConcept C52622490 @default.
- W4387162020 hasConcept C71924100 @default.
- W4387162020 hasConcept C81363708 @default.
- W4387162020 hasConceptScore W4387162020C119857082 @default.
- W4387162020 hasConceptScore W4387162020C136764020 @default.
- W4387162020 hasConceptScore W4387162020C138885662 @default.
- W4387162020 hasConceptScore W4387162020C142724271 @default.
- W4387162020 hasConceptScore W4387162020C147168706 @default.
- W4387162020 hasConceptScore W4387162020C153180895 @default.
- W4387162020 hasConceptScore W4387162020C154945302 @default.
- W4387162020 hasConceptScore W4387162020C17744445 @default.
- W4387162020 hasConceptScore W4387162020C199539241 @default.
- W4387162020 hasConceptScore W4387162020C204787440 @default.
- W4387162020 hasConceptScore W4387162020C2776401178 @default.
- W4387162020 hasConceptScore W4387162020C2778321746 @default.
- W4387162020 hasConceptScore W4387162020C35361118 @default.
- W4387162020 hasConceptScore W4387162020C41008148 @default.
- W4387162020 hasConceptScore W4387162020C41895202 @default.
- W4387162020 hasConceptScore W4387162020C50644808 @default.
- W4387162020 hasConceptScore W4387162020C518677369 @default.
- W4387162020 hasConceptScore W4387162020C52622490 @default.
- W4387162020 hasConceptScore W4387162020C71924100 @default.
- W4387162020 hasConceptScore W4387162020C81363708 @default.
- W4387162020 hasLocation W43871620201 @default.
- W4387162020 hasOpenAccess W4387162020 @default.
- W4387162020 hasPrimaryLocation W43871620201 @default.
- W4387162020 hasRelatedWork W2144059113 @default.
- W4387162020 hasRelatedWork W2146076056 @default.
- W4387162020 hasRelatedWork W2546942002 @default.
- W4387162020 hasRelatedWork W2767651786 @default.
- W4387162020 hasRelatedWork W2811390910 @default.
- W4387162020 hasRelatedWork W2913302899 @default.
- W4387162020 hasRelatedWork W3003836766 @default.
- W4387162020 hasRelatedWork W3027997911 @default.
- W4387162020 hasRelatedWork W4287776258 @default.
- W4387162020 hasRelatedWork W4312376745 @default.
- W4387162020 isParatext "false" @default.
- W4387162020 isRetracted "false" @default.
- W4387162020 workType "article" @default.