Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387162853> ?p ?o ?g. }
- W4387162853 abstract "In the wake of environmental protection and all other inter-continental resolutions, the transportation is slowly shifting towards less polluting alternatives. Electric vehicle (EV) transformation in the transportation sector would be a better choice to reduce huge amounts of direct greenhouse gas emissions (GHG), though there are many factors involved such as source of power used for charging, pollution due to manufacturing process and disposal of hazardous materials that adds up to polluting factors. To maximize the reduction of GHG emissions, charging of EVs with a renewable energy source and reuse of EV parts in a sustainable manner is a crucial step. Globally, the governments have started supporting Electric Vehicle transportation with many schemes to encourage public interest for buying [1]. Accommodating electricity for conveyance would soar the power requirement for charging and hence increasing the burden on the grid. Under these conditions existing grid has to be supported with renewable power sources, to reduce the stress on the grid and environmental pollution. The solar photovoltaic (PV) systems are considered to be the best suitable choice for off-grid and grid-tied EV charging stations. As the solar power is intermittent in nature, it cannot provide a stand-alone and reliable solution. But if a smart controller for predicting the optimized utilization of grid power, this solar powered EV charging station can act as a sustainable power source. The proposed work deals with grid power forecasting based on solar PV availability and EV charging demand requirement in a Solar PV based EV charging station. A machine learning oriented model with a set of algorithms applied to datasets and correlation analysis using a python program was also carried out to identify the most dependent inputs and least dependent inputs for more sophisticated analysis. A linear SVM model with least RMSE of 0.07282 is found as the best technique for this implementation." @default.
- W4387162853 created "2023-09-30" @default.
- W4387162853 creator A5034763842 @default.
- W4387162853 creator A5076876685 @default.
- W4387162853 date "2023-06-08" @default.
- W4387162853 modified "2023-09-30" @default.
- W4387162853 title "ML based Prediction for Grid support in a Solar Photovoltaic Electric Vehicle Charging Station" @default.
- W4387162853 cites W2610314771 @default.
- W4387162853 cites W2766659793 @default.
- W4387162853 cites W2909354520 @default.
- W4387162853 cites W2971378705 @default.
- W4387162853 cites W2971407673 @default.
- W4387162853 cites W2971578179 @default.
- W4387162853 cites W3050548582 @default.
- W4387162853 cites W3086833944 @default.
- W4387162853 cites W3123775503 @default.
- W4387162853 cites W3127645727 @default.
- W4387162853 cites W3135206974 @default.
- W4387162853 cites W3154176337 @default.
- W4387162853 cites W3163126694 @default.
- W4387162853 cites W3166956702 @default.
- W4387162853 cites W3173432908 @default.
- W4387162853 cites W3196783671 @default.
- W4387162853 cites W3199553278 @default.
- W4387162853 cites W4205586450 @default.
- W4387162853 cites W4206088114 @default.
- W4387162853 cites W4280653624 @default.
- W4387162853 cites W4312327969 @default.
- W4387162853 doi "https://doi.org/10.1109/ic2e357697.2023.10262625" @default.
- W4387162853 hasPublicationYear "2023" @default.
- W4387162853 type Work @default.
- W4387162853 citedByCount "0" @default.
- W4387162853 crossrefType "proceedings-article" @default.
- W4387162853 hasAuthorship W4387162853A5034763842 @default.
- W4387162853 hasAuthorship W4387162853A5076876685 @default.
- W4387162853 hasConcept C11190779 @default.
- W4387162853 hasConcept C119599485 @default.
- W4387162853 hasConcept C121332964 @default.
- W4387162853 hasConcept C127413603 @default.
- W4387162853 hasConcept C134560507 @default.
- W4387162853 hasConcept C162324750 @default.
- W4387162853 hasConcept C163258240 @default.
- W4387162853 hasConcept C165801399 @default.
- W4387162853 hasConcept C171146098 @default.
- W4387162853 hasConcept C186503672 @default.
- W4387162853 hasConcept C187691185 @default.
- W4387162853 hasConcept C188573790 @default.
- W4387162853 hasConcept C18903297 @default.
- W4387162853 hasConcept C195697387 @default.
- W4387162853 hasConcept C2524010 @default.
- W4387162853 hasConcept C2776422217 @default.
- W4387162853 hasConcept C2777618391 @default.
- W4387162853 hasConcept C2779607880 @default.
- W4387162853 hasConcept C33923547 @default.
- W4387162853 hasConcept C36139824 @default.
- W4387162853 hasConcept C39432304 @default.
- W4387162853 hasConcept C41291067 @default.
- W4387162853 hasConcept C47737302 @default.
- W4387162853 hasConcept C542589376 @default.
- W4387162853 hasConcept C62520636 @default.
- W4387162853 hasConcept C86803240 @default.
- W4387162853 hasConceptScore W4387162853C11190779 @default.
- W4387162853 hasConceptScore W4387162853C119599485 @default.
- W4387162853 hasConceptScore W4387162853C121332964 @default.
- W4387162853 hasConceptScore W4387162853C127413603 @default.
- W4387162853 hasConceptScore W4387162853C134560507 @default.
- W4387162853 hasConceptScore W4387162853C162324750 @default.
- W4387162853 hasConceptScore W4387162853C163258240 @default.
- W4387162853 hasConceptScore W4387162853C165801399 @default.
- W4387162853 hasConceptScore W4387162853C171146098 @default.
- W4387162853 hasConceptScore W4387162853C186503672 @default.
- W4387162853 hasConceptScore W4387162853C187691185 @default.
- W4387162853 hasConceptScore W4387162853C188573790 @default.
- W4387162853 hasConceptScore W4387162853C18903297 @default.
- W4387162853 hasConceptScore W4387162853C195697387 @default.
- W4387162853 hasConceptScore W4387162853C2524010 @default.
- W4387162853 hasConceptScore W4387162853C2776422217 @default.
- W4387162853 hasConceptScore W4387162853C2777618391 @default.
- W4387162853 hasConceptScore W4387162853C2779607880 @default.
- W4387162853 hasConceptScore W4387162853C33923547 @default.
- W4387162853 hasConceptScore W4387162853C36139824 @default.
- W4387162853 hasConceptScore W4387162853C39432304 @default.
- W4387162853 hasConceptScore W4387162853C41291067 @default.
- W4387162853 hasConceptScore W4387162853C47737302 @default.
- W4387162853 hasConceptScore W4387162853C542589376 @default.
- W4387162853 hasConceptScore W4387162853C62520636 @default.
- W4387162853 hasConceptScore W4387162853C86803240 @default.
- W4387162853 hasLocation W43871628531 @default.
- W4387162853 hasOpenAccess W4387162853 @default.
- W4387162853 hasPrimaryLocation W43871628531 @default.
- W4387162853 hasRelatedWork W2013682920 @default.
- W4387162853 hasRelatedWork W2080031997 @default.
- W4387162853 hasRelatedWork W2087926030 @default.
- W4387162853 hasRelatedWork W2095582430 @default.
- W4387162853 hasRelatedWork W2348517992 @default.
- W4387162853 hasRelatedWork W2380972443 @default.
- W4387162853 hasRelatedWork W2899084033 @default.
- W4387162853 hasRelatedWork W3011029559 @default.
- W4387162853 hasRelatedWork W3206138891 @default.
- W4387162853 hasRelatedWork W4321510637 @default.