Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387162893> ?p ?o ?g. }
- W4387162893 abstract "Abstract This study proposes a novel fusion framework for flood forecasting based on machine learning, statistical, and geostatistical models for daily multiple-step-ahead and near future under climate change scenarios. To do this, remote sensing precipitation data of ERA5, CHIRPS, and PERSIANN-CDR were utilized to fill the gap data of meteorological stations. Four Individual Machine Learning (IML) models, including Random Forest, Multiple-Layer Perceptron, Support Vector Machine, and Extreme Learning Machine were developed for twelve days ahead of streamflow modeling. Then, three fusion models, including Random Forest, Bayesian Model Averaging, and Bayesian Maximum Entropy were applied to combine the outputs of IML models. The proposed framework also was implemented to downscale the precipitation variable of three general climate models (GCMs) under SSP5-8.5 and SSP1-2.6 scenarios. The results indicated that individual models illustrated weak performance, especially in far steps flood forecasting, so it is necessary to utilize a fusion technique to improve the results. In the fusion step, the RF model indicated high efficiency compared to other fusion models. This technique also demonstrated an effective proficiency in downscaling precipitation data of GCMs on a daily scale. Finally, flood forecasting model was developed based on the fusion framework in the near future (2020–2040) by using the precipitation data of two scenarios. We conclude that flood events based on both SSP5-8.5 and SSP1-2.6 will increase in the future in our case study. Also, the frequency evaluation shows that floods under SSP1-2.6 will occur about 10 percent more than SSP5-8.5 in the Kan river basin from 2020 to 2040." @default.
- W4387162893 created "2023-09-30" @default.
- W4387162893 creator A5016579329 @default.
- W4387162893 creator A5062207060 @default.
- W4387162893 creator A5081654260 @default.
- W4387162893 date "2023-09-29" @default.
- W4387162893 modified "2023-10-12" @default.
- W4387162893 title "Multi-model fusion-based framework for daily flood forecasting in multiple-step-ahead and near future under climate change scenarios" @default.
- W4387162893 cites W1197692462 @default.
- W4387162893 cites W1556090316 @default.
- W4387162893 cites W1567497354 @default.
- W4387162893 cites W1780280917 @default.
- W4387162893 cites W1975381045 @default.
- W4387162893 cites W1982695468 @default.
- W4387162893 cites W1988039298 @default.
- W4387162893 cites W1990561025 @default.
- W4387162893 cites W1991921673 @default.
- W4387162893 cites W2004796972 @default.
- W4387162893 cites W2038913727 @default.
- W4387162893 cites W2044097111 @default.
- W4387162893 cites W2047028263 @default.
- W4387162893 cites W2054987122 @default.
- W4387162893 cites W2055695879 @default.
- W4387162893 cites W2064859702 @default.
- W4387162893 cites W2080998408 @default.
- W4387162893 cites W2083082288 @default.
- W4387162893 cites W2093049120 @default.
- W4387162893 cites W2093473119 @default.
- W4387162893 cites W2119179880 @default.
- W4387162893 cites W2125500141 @default.
- W4387162893 cites W2146495904 @default.
- W4387162893 cites W2156909104 @default.
- W4387162893 cites W2158840489 @default.
- W4387162893 cites W2261645655 @default.
- W4387162893 cites W2466177193 @default.
- W4387162893 cites W2621795700 @default.
- W4387162893 cites W2773900012 @default.
- W4387162893 cites W2783443666 @default.
- W4387162893 cites W2788411055 @default.
- W4387162893 cites W2799918535 @default.
- W4387162893 cites W2802090116 @default.
- W4387162893 cites W2889135933 @default.
- W4387162893 cites W2894776305 @default.
- W4387162893 cites W2898511323 @default.
- W4387162893 cites W2910752046 @default.
- W4387162893 cites W2911964244 @default.
- W4387162893 cites W2953468274 @default.
- W4387162893 cites W3047453277 @default.
- W4387162893 cites W3099487920 @default.
- W4387162893 cites W3110390064 @default.
- W4387162893 cites W3124230025 @default.
- W4387162893 cites W3127010103 @default.
- W4387162893 cites W3137668841 @default.
- W4387162893 cites W3184696357 @default.
- W4387162893 cites W3205658663 @default.
- W4387162893 cites W4200066771 @default.
- W4387162893 cites W4281639156 @default.
- W4387162893 cites W4283835898 @default.
- W4387162893 cites W4293795348 @default.
- W4387162893 cites W4297957988 @default.
- W4387162893 cites W4309154825 @default.
- W4387162893 cites W4323047023 @default.
- W4387162893 doi "https://doi.org/10.21203/rs.3.rs-3360682/v1" @default.
- W4387162893 hasPublicationYear "2023" @default.
- W4387162893 type Work @default.
- W4387162893 citedByCount "0" @default.
- W4387162893 crossrefType "posted-content" @default.
- W4387162893 hasAuthorship W4387162893A5016579329 @default.
- W4387162893 hasAuthorship W4387162893A5062207060 @default.
- W4387162893 hasAuthorship W4387162893A5081654260 @default.
- W4387162893 hasBestOaLocation W43871628931 @default.
- W4387162893 hasConcept C107054158 @default.
- W4387162893 hasConcept C107673813 @default.
- W4387162893 hasConcept C119857082 @default.
- W4387162893 hasConcept C124101348 @default.
- W4387162893 hasConcept C127313418 @default.
- W4387162893 hasConcept C132651083 @default.
- W4387162893 hasConcept C153294291 @default.
- W4387162893 hasConcept C154945302 @default.
- W4387162893 hasConcept C166957645 @default.
- W4387162893 hasConcept C169258074 @default.
- W4387162893 hasConcept C18903297 @default.
- W4387162893 hasConcept C205649164 @default.
- W4387162893 hasConcept C39432304 @default.
- W4387162893 hasConcept C41008148 @default.
- W4387162893 hasConcept C41156917 @default.
- W4387162893 hasConcept C49204034 @default.
- W4387162893 hasConcept C74256435 @default.
- W4387162893 hasConcept C86803240 @default.
- W4387162893 hasConceptScore W4387162893C107054158 @default.
- W4387162893 hasConceptScore W4387162893C107673813 @default.
- W4387162893 hasConceptScore W4387162893C119857082 @default.
- W4387162893 hasConceptScore W4387162893C124101348 @default.
- W4387162893 hasConceptScore W4387162893C127313418 @default.
- W4387162893 hasConceptScore W4387162893C132651083 @default.
- W4387162893 hasConceptScore W4387162893C153294291 @default.
- W4387162893 hasConceptScore W4387162893C154945302 @default.
- W4387162893 hasConceptScore W4387162893C166957645 @default.
- W4387162893 hasConceptScore W4387162893C169258074 @default.
- W4387162893 hasConceptScore W4387162893C18903297 @default.