Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387163723> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387163723 abstract "Hoax news has long been a problem for society that is quite worrying because receiving hoax news can change a person's point of view to something that is not good, the impact of which is detrimental to many individuals and groups of people. Machine learning and deep learning can be implemented to detect hoax news. Examples of methods used in previous studies are SVM (Support Vector Machine) and CNN (Convolutional Neural Network). This research proposes the application of the CNN and SVM methods. In addition, this research develops a CNN-SVM hybrid model, which is the uniqueness of this research. The dataset is sourced from Twitter which focuses on the Ferdy Sambo Case and the Kanjuruhan Tragedy that will occur in 2022. The dataset amounts to 25,325 and is divided into two with a splitting ratio of 90:10. After three algorithms was trained, they achieved excellent performance. This matter can be seen from the accuracy scores for the two methods, which managed to improve their performance after feature extraction and expansion were applied with TF-IDF (Term Frequency Inverse Document Frequency) feature extraction, unigram + bigram weighting, and feature expansion with GloVe (Global Vector for Word Representation). The highest performance model is the SVM model with the similarity top 1 and Tweet corpus (95.95% accuracy), followed by the hybrid CNN-SVM model with the similarity top 10 and Tweet + News corpus (95.79% accuracy) and CNN model with the similarity top 15 with Tweet + News corpus (95.11% accuracy)." @default.
- W4387163723 created "2023-09-30" @default.
- W4387163723 creator A5023888994 @default.
- W4387163723 creator A5092965509 @default.
- W4387163723 date "2023-08-23" @default.
- W4387163723 modified "2023-09-30" @default.
- W4387163723 title "Hoax Detection on Social Media with Convolutional Neural Network (CNN) and Support Vector Machine (SVM)" @default.
- W4387163723 cites W2945702245 @default.
- W4387163723 cites W2997739790 @default.
- W4387163723 cites W3001895040 @default.
- W4387163723 cites W3023895165 @default.
- W4387163723 cites W3033074691 @default.
- W4387163723 cites W3081246177 @default.
- W4387163723 cites W3131684216 @default.
- W4387163723 cites W3168744144 @default.
- W4387163723 cites W3176894272 @default.
- W4387163723 cites W3208159610 @default.
- W4387163723 cites W4205893563 @default.
- W4387163723 cites W4206939892 @default.
- W4387163723 cites W4236410377 @default.
- W4387163723 doi "https://doi.org/10.1109/icoict58202.2023.10262433" @default.
- W4387163723 hasPublicationYear "2023" @default.
- W4387163723 type Work @default.
- W4387163723 citedByCount "0" @default.
- W4387163723 crossrefType "proceedings-article" @default.
- W4387163723 hasAuthorship W4387163723A5023888994 @default.
- W4387163723 hasAuthorship W4387163723A5092965509 @default.
- W4387163723 hasConcept C103278499 @default.
- W4387163723 hasConcept C108757681 @default.
- W4387163723 hasConcept C115961682 @default.
- W4387163723 hasConcept C119857082 @default.
- W4387163723 hasConcept C121332964 @default.
- W4387163723 hasConcept C12267149 @default.
- W4387163723 hasConcept C137546455 @default.
- W4387163723 hasConcept C138885662 @default.
- W4387163723 hasConcept C142724271 @default.
- W4387163723 hasConcept C153180895 @default.
- W4387163723 hasConcept C154945302 @default.
- W4387163723 hasConcept C204787440 @default.
- W4387163723 hasConcept C2776401178 @default.
- W4387163723 hasConcept C2780762811 @default.
- W4387163723 hasConcept C35361118 @default.
- W4387163723 hasConcept C41008148 @default.
- W4387163723 hasConcept C41895202 @default.
- W4387163723 hasConcept C52622490 @default.
- W4387163723 hasConcept C61797465 @default.
- W4387163723 hasConcept C62520636 @default.
- W4387163723 hasConcept C71924100 @default.
- W4387163723 hasConcept C81363708 @default.
- W4387163723 hasConcept C81758059 @default.
- W4387163723 hasConceptScore W4387163723C103278499 @default.
- W4387163723 hasConceptScore W4387163723C108757681 @default.
- W4387163723 hasConceptScore W4387163723C115961682 @default.
- W4387163723 hasConceptScore W4387163723C119857082 @default.
- W4387163723 hasConceptScore W4387163723C121332964 @default.
- W4387163723 hasConceptScore W4387163723C12267149 @default.
- W4387163723 hasConceptScore W4387163723C137546455 @default.
- W4387163723 hasConceptScore W4387163723C138885662 @default.
- W4387163723 hasConceptScore W4387163723C142724271 @default.
- W4387163723 hasConceptScore W4387163723C153180895 @default.
- W4387163723 hasConceptScore W4387163723C154945302 @default.
- W4387163723 hasConceptScore W4387163723C204787440 @default.
- W4387163723 hasConceptScore W4387163723C2776401178 @default.
- W4387163723 hasConceptScore W4387163723C2780762811 @default.
- W4387163723 hasConceptScore W4387163723C35361118 @default.
- W4387163723 hasConceptScore W4387163723C41008148 @default.
- W4387163723 hasConceptScore W4387163723C41895202 @default.
- W4387163723 hasConceptScore W4387163723C52622490 @default.
- W4387163723 hasConceptScore W4387163723C61797465 @default.
- W4387163723 hasConceptScore W4387163723C62520636 @default.
- W4387163723 hasConceptScore W4387163723C71924100 @default.
- W4387163723 hasConceptScore W4387163723C81363708 @default.
- W4387163723 hasConceptScore W4387163723C81758059 @default.
- W4387163723 hasLocation W43871637231 @default.
- W4387163723 hasOpenAccess W4387163723 @default.
- W4387163723 hasPrimaryLocation W43871637231 @default.
- W4387163723 hasRelatedWork W1515518862 @default.
- W4387163723 hasRelatedWork W2336974148 @default.
- W4387163723 hasRelatedWork W2546942002 @default.
- W4387163723 hasRelatedWork W2583212553 @default.
- W4387163723 hasRelatedWork W2962745453 @default.
- W4387163723 hasRelatedWork W2996933976 @default.
- W4387163723 hasRelatedWork W3199775674 @default.
- W4387163723 hasRelatedWork W3208266890 @default.
- W4387163723 hasRelatedWork W4205275932 @default.
- W4387163723 hasRelatedWork W2345184372 @default.
- W4387163723 isParatext "false" @default.
- W4387163723 isRetracted "false" @default.
- W4387163723 workType "article" @default.