Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387164078> ?p ?o ?g. }
- W4387164078 endingPage "129232" @default.
- W4387164078 startingPage "129232" @default.
- W4387164078 abstract "The world's energy demands are growing at an unprecedented rate, and the exploration of new hydrocarbon sources is more important than ever. Therefore, the objective of this study was first to quantitatively analyze hydrocarbon source rock potentiality of the Triassic-Jurassic of Mandawa Basin based on the generalized group method of data handling neural network (g-GMDH), Machine learning, and Geochemical using well logs data. Then a novel g-GMDH was presented to predict a continuous geochemical log profile of TOC, Tmax, S1, and S2. It was observed that the basin's hydrocarbon source rocks are classified as fair to very good source rocks with TOC contents ranging from 0.5 to 8.7 wt%. The source rocks contain mixed kerogen type II and III, which are oil and gas-prone, ranging from immature to mature source rocks. The results of the predictive models indicated that the g-GMDH model trained better whilst generalizing well throughout the testing data than both GPR and SVM models. Specifically, the g-GMDH when tested on unseen data had the least value of MSE = 0.18, 2.35, 0.08, and 61.74 for TOC, Tmax, S1, and S2 respectively, and MAE = 0.45, 1.37, 0.17 and 11.55 for TOC, Tmax, S1 and S2 respectively. The g-GMDH model was further applied to assess the source rock and predict the geochemical information in the East Lika well, which lacks core data. The proposed model can offer rapid and real-time values of geochemical indicators and are independent of laboratory-dependent parameters therefore, can be adopted as an improved technique for evaluating source rocks in frontier basins." @default.
- W4387164078 created "2023-09-30" @default.
- W4387164078 creator A5026479508 @default.
- W4387164078 creator A5040519573 @default.
- W4387164078 creator A5053772918 @default.
- W4387164078 creator A5072356202 @default.
- W4387164078 date "2023-12-01" @default.
- W4387164078 modified "2023-10-17" @default.
- W4387164078 title "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania" @default.
- W4387164078 cites W1964489650 @default.
- W4387164078 cites W1972508947 @default.
- W4387164078 cites W1993544595 @default.
- W4387164078 cites W2055499138 @default.
- W4387164078 cites W2071598638 @default.
- W4387164078 cites W2091492012 @default.
- W4387164078 cites W2105360073 @default.
- W4387164078 cites W2162933925 @default.
- W4387164078 cites W2316447717 @default.
- W4387164078 cites W2395047926 @default.
- W4387164078 cites W2621384949 @default.
- W4387164078 cites W2727163156 @default.
- W4387164078 cites W2774053766 @default.
- W4387164078 cites W2775488500 @default.
- W4387164078 cites W2807838313 @default.
- W4387164078 cites W2890910651 @default.
- W4387164078 cites W2892578624 @default.
- W4387164078 cites W2902009284 @default.
- W4387164078 cites W2914046321 @default.
- W4387164078 cites W2921393817 @default.
- W4387164078 cites W2937436053 @default.
- W4387164078 cites W2937440203 @default.
- W4387164078 cites W2947103770 @default.
- W4387164078 cites W2969882509 @default.
- W4387164078 cites W2980902238 @default.
- W4387164078 cites W3008419311 @default.
- W4387164078 cites W3011285345 @default.
- W4387164078 cites W3024817233 @default.
- W4387164078 cites W3025035742 @default.
- W4387164078 cites W3036237614 @default.
- W4387164078 cites W3088854531 @default.
- W4387164078 cites W3088892609 @default.
- W4387164078 cites W3133163205 @default.
- W4387164078 cites W3136129090 @default.
- W4387164078 cites W3139097650 @default.
- W4387164078 cites W3141689768 @default.
- W4387164078 cites W3161066282 @default.
- W4387164078 cites W3174764269 @default.
- W4387164078 cites W3177427726 @default.
- W4387164078 cites W3196967845 @default.
- W4387164078 cites W3203896709 @default.
- W4387164078 cites W3205647023 @default.
- W4387164078 cites W3214389166 @default.
- W4387164078 cites W3216182831 @default.
- W4387164078 cites W4200203587 @default.
- W4387164078 cites W4206278813 @default.
- W4387164078 cites W4220753710 @default.
- W4387164078 cites W4280649422 @default.
- W4387164078 cites W4281400158 @default.
- W4387164078 cites W4281763989 @default.
- W4387164078 cites W4283368933 @default.
- W4387164078 cites W4283513259 @default.
- W4387164078 cites W4283771848 @default.
- W4387164078 cites W4294325886 @default.
- W4387164078 cites W4302024152 @default.
- W4387164078 cites W4302774146 @default.
- W4387164078 cites W4307488573 @default.
- W4387164078 cites W4308491673 @default.
- W4387164078 cites W4308739010 @default.
- W4387164078 cites W4309763970 @default.
- W4387164078 cites W4327972614 @default.
- W4387164078 cites W4385638946 @default.
- W4387164078 cites W878685764 @default.
- W4387164078 doi "https://doi.org/10.1016/j.energy.2023.129232" @default.
- W4387164078 hasPublicationYear "2023" @default.
- W4387164078 type Work @default.
- W4387164078 citedByCount "1" @default.
- W4387164078 crossrefType "journal-article" @default.
- W4387164078 hasAuthorship W4387164078A5026479508 @default.
- W4387164078 hasAuthorship W4387164078A5040519573 @default.
- W4387164078 hasAuthorship W4387164078A5053772918 @default.
- W4387164078 hasAuthorship W4387164078A5072356202 @default.
- W4387164078 hasConcept C109007969 @default.
- W4387164078 hasConcept C126559015 @default.
- W4387164078 hasConcept C127313418 @default.
- W4387164078 hasConcept C151730666 @default.
- W4387164078 hasConcept C17409809 @default.
- W4387164078 hasConcept C178790620 @default.
- W4387164078 hasConcept C185592680 @default.
- W4387164078 hasConcept C199289684 @default.
- W4387164078 hasConcept C204330871 @default.
- W4387164078 hasConcept C2776662147 @default.
- W4387164078 hasConcept C2777207669 @default.
- W4387164078 hasConcept C2779196632 @default.
- W4387164078 hasConcept C35817400 @default.
- W4387164078 hasConcept C548895740 @default.
- W4387164078 hasConcept C78762247 @default.
- W4387164078 hasConceptScore W4387164078C109007969 @default.
- W4387164078 hasConceptScore W4387164078C126559015 @default.