Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387164920> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4387164920 abstract "Abstract Purpose- As the stock price’s fluctuation is nonlinear and greatly affected by environmental and industrial factors, stock prediction is extremely complicated and has various methods. This paper aims to find the optimal prediction model for predicting the Hang Seng stock market data from six main forecasting methods: ARIMA (Auto Regressive Integrated Moving Average), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Long short-term memory (LSTM), Gated Circulation Unit (GRU) and Conv1D-LSTM. Design/methodology/approach- In this project, the authors apply the open data of Hang Seng stock’s hour-by-hour closing prices to the above methods to establish forecasting models. Among them, hourly technical indicators (such as MA, EMA, and Momentum) are used in training neural network models as features. MSE and MAE methods are utilized to evaluate the discrepancy between the predicted and actual values. Finally, the accuracy of the buying decision (purchase or sell) is tested by the yield calculated by the actual closing price and the predicted closing price, respectively. Findings- The data collected from open data of the Hang Seng dataset from September 2019 to September 2020 contained hourly stock indexes, including closing price, opening price, high price, low price, volume, and other fundamental indicators. The total amount of data was 4608 (hours)× 26 (indexes) samples. The contribution of this paper to the existing knowledge is the evidence that the LSTM model has more advantages in forecasting and purchasing decisions compared with other models limited to the Hang Seng stock market. On this basis, the in-depth analysis demonstrates that the datasets multi-dimensionality and timeliness should be considered in the prediction model design. And the proposed architecture of deep learning models in this study could be modified to an expert system coupled with several models to explore the best approach to predicting a stock market's trading trend. Originality/value- The contribution of this paper to the existing knowledge is the evidence that the LSTM model has more advantages in forecasting and purchasing decisions compared with other models limited to the Hang Seng stock market. On this basis, the in-depth analysis demonstrates that the datasets multi-dimensionality and timeliness should be considered in the prediction model design. And the proposed architecture of deep learning models in this study could be modified to an expert system coupled with several models to explore the best approach to predicting a stock market's trading trend." @default.
- W4387164920 created "2023-09-30" @default.
- W4387164920 creator A5006841849 @default.
- W4387164920 creator A5023569287 @default.
- W4387164920 creator A5024240334 @default.
- W4387164920 creator A5041144479 @default.
- W4387164920 creator A5078708592 @default.
- W4387164920 date "2023-09-29" @default.
- W4387164920 modified "2023-09-30" @default.
- W4387164920 title "Time-Sensitive Index Future Trading Trend Prediction with Deep Learning methods" @default.
- W4387164920 doi "https://doi.org/10.21203/rs.3.rs-3339532/v1" @default.
- W4387164920 hasPublicationYear "2023" @default.
- W4387164920 type Work @default.
- W4387164920 citedByCount "0" @default.
- W4387164920 crossrefType "posted-content" @default.
- W4387164920 hasAuthorship W4387164920A5006841849 @default.
- W4387164920 hasAuthorship W4387164920A5023569287 @default.
- W4387164920 hasAuthorship W4387164920A5024240334 @default.
- W4387164920 hasAuthorship W4387164920A5041144479 @default.
- W4387164920 hasAuthorship W4387164920A5078708592 @default.
- W4387164920 hasBestOaLocation W43871649201 @default.
- W4387164920 hasConcept C10138342 @default.
- W4387164920 hasConcept C111919701 @default.
- W4387164920 hasConcept C119857082 @default.
- W4387164920 hasConcept C127413603 @default.
- W4387164920 hasConcept C136764020 @default.
- W4387164920 hasConcept C149782125 @default.
- W4387164920 hasConcept C151406439 @default.
- W4387164920 hasConcept C151730666 @default.
- W4387164920 hasConcept C154945302 @default.
- W4387164920 hasConcept C162324750 @default.
- W4387164920 hasConcept C204036174 @default.
- W4387164920 hasConcept C24338571 @default.
- W4387164920 hasConcept C2777382242 @default.
- W4387164920 hasConcept C2778775528 @default.
- W4387164920 hasConcept C2779343474 @default.
- W4387164920 hasConcept C2780299701 @default.
- W4387164920 hasConcept C2781323245 @default.
- W4387164920 hasConcept C41008148 @default.
- W4387164920 hasConcept C50644808 @default.
- W4387164920 hasConcept C78519656 @default.
- W4387164920 hasConcept C81363708 @default.
- W4387164920 hasConcept C86803240 @default.
- W4387164920 hasConcept C88389905 @default.
- W4387164920 hasConceptScore W4387164920C10138342 @default.
- W4387164920 hasConceptScore W4387164920C111919701 @default.
- W4387164920 hasConceptScore W4387164920C119857082 @default.
- W4387164920 hasConceptScore W4387164920C127413603 @default.
- W4387164920 hasConceptScore W4387164920C136764020 @default.
- W4387164920 hasConceptScore W4387164920C149782125 @default.
- W4387164920 hasConceptScore W4387164920C151406439 @default.
- W4387164920 hasConceptScore W4387164920C151730666 @default.
- W4387164920 hasConceptScore W4387164920C154945302 @default.
- W4387164920 hasConceptScore W4387164920C162324750 @default.
- W4387164920 hasConceptScore W4387164920C204036174 @default.
- W4387164920 hasConceptScore W4387164920C24338571 @default.
- W4387164920 hasConceptScore W4387164920C2777382242 @default.
- W4387164920 hasConceptScore W4387164920C2778775528 @default.
- W4387164920 hasConceptScore W4387164920C2779343474 @default.
- W4387164920 hasConceptScore W4387164920C2780299701 @default.
- W4387164920 hasConceptScore W4387164920C2781323245 @default.
- W4387164920 hasConceptScore W4387164920C41008148 @default.
- W4387164920 hasConceptScore W4387164920C50644808 @default.
- W4387164920 hasConceptScore W4387164920C78519656 @default.
- W4387164920 hasConceptScore W4387164920C81363708 @default.
- W4387164920 hasConceptScore W4387164920C86803240 @default.
- W4387164920 hasConceptScore W4387164920C88389905 @default.
- W4387164920 hasLocation W43871649201 @default.
- W4387164920 hasOpenAccess W4387164920 @default.
- W4387164920 hasPrimaryLocation W43871649201 @default.
- W4387164920 hasRelatedWork W2171315676 @default.
- W4387164920 hasRelatedWork W2289642014 @default.
- W4387164920 hasRelatedWork W2886342493 @default.
- W4387164920 hasRelatedWork W2989830731 @default.
- W4387164920 hasRelatedWork W3122644331 @default.
- W4387164920 hasRelatedWork W3204012407 @default.
- W4387164920 hasRelatedWork W4283067294 @default.
- W4387164920 hasRelatedWork W4287776258 @default.
- W4387164920 hasRelatedWork W4313489356 @default.
- W4387164920 hasRelatedWork W4384914743 @default.
- W4387164920 isParatext "false" @default.
- W4387164920 isRetracted "false" @default.
- W4387164920 workType "article" @default.