Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387165792> ?p ?o ?g. }
- W4387165792 endingPage "100079" @default.
- W4387165792 startingPage "100079" @default.
- W4387165792 abstract "Graph Semi-Supervised learning is an important data analysis tool, where given a graph and a set of labeled nodes, the aim is to infer the labels to the remaining unlabeled nodes. In this paper, we start by considering an optimization-based formulation of the problem for an undirected graph, and then we extend this formulation to multilayer hypergraphs. We solve the problem using different coordinate descent approaches and compare the results with the ones obtained by the classic gradient descent method. Experiments on synthetic and real-world datasets show the potential of using coordinate descent methods with suitable selection rules." @default.
- W4387165792 created "2023-09-30" @default.
- W4387165792 creator A5001713985 @default.
- W4387165792 creator A5005501332 @default.
- W4387165792 creator A5040000503 @default.
- W4387165792 creator A5043752696 @default.
- W4387165792 date "2023-09-01" @default.
- W4387165792 modified "2023-09-30" @default.
- W4387165792 title "Laplacian-based Semi-Supervised Learning in Multilayer Hypergraphs by Coordinate Descent" @default.
- W4387165792 cites W1994744421 @default.
- W4387165792 cites W1999593606 @default.
- W4387165792 cites W2000769684 @default.
- W4387165792 cites W2007477772 @default.
- W4387165792 cites W2013850411 @default.
- W4387165792 cites W2027361795 @default.
- W4387165792 cites W2032395696 @default.
- W4387165792 cites W2039050532 @default.
- W4387165792 cites W2039707593 @default.
- W4387165792 cites W2047542122 @default.
- W4387165792 cites W2049556680 @default.
- W4387165792 cites W2050968963 @default.
- W4387165792 cites W2069213542 @default.
- W4387165792 cites W2072265605 @default.
- W4387165792 cites W2082639035 @default.
- W4387165792 cites W2084786453 @default.
- W4387165792 cites W2095984592 @default.
- W4387165792 cites W2102907934 @default.
- W4387165792 cites W2117686388 @default.
- W4387165792 cites W2149454052 @default.
- W4387165792 cites W2584187726 @default.
- W4387165792 cites W2746468160 @default.
- W4387165792 cites W2809196974 @default.
- W4387165792 cites W2962701197 @default.
- W4387165792 cites W2962826709 @default.
- W4387165792 cites W2962990180 @default.
- W4387165792 cites W2963343977 @default.
- W4387165792 cites W2979157508 @default.
- W4387165792 cites W3007872411 @default.
- W4387165792 cites W3010316612 @default.
- W4387165792 cites W3035258118 @default.
- W4387165792 cites W3099937901 @default.
- W4387165792 cites W3101735029 @default.
- W4387165792 cites W3103589660 @default.
- W4387165792 cites W3133744637 @default.
- W4387165792 cites W3153183982 @default.
- W4387165792 cites W3160019056 @default.
- W4387165792 cites W3177994886 @default.
- W4387165792 cites W3217235274 @default.
- W4387165792 cites W4210546256 @default.
- W4387165792 cites W4297498189 @default.
- W4387165792 cites W4299513490 @default.
- W4387165792 cites W4310055979 @default.
- W4387165792 cites W4311778527 @default.
- W4387165792 cites W835513632 @default.
- W4387165792 doi "https://doi.org/10.1016/j.ejco.2023.100079" @default.
- W4387165792 hasPublicationYear "2023" @default.
- W4387165792 type Work @default.
- W4387165792 citedByCount "0" @default.
- W4387165792 crossrefType "journal-article" @default.
- W4387165792 hasAuthorship W4387165792A5001713985 @default.
- W4387165792 hasAuthorship W4387165792A5005501332 @default.
- W4387165792 hasAuthorship W4387165792A5040000503 @default.
- W4387165792 hasAuthorship W4387165792A5043752696 @default.
- W4387165792 hasBestOaLocation W43871657921 @default.
- W4387165792 hasConcept C11413529 @default.
- W4387165792 hasConcept C115178988 @default.
- W4387165792 hasConcept C127413603 @default.
- W4387165792 hasConcept C132525143 @default.
- W4387165792 hasConcept C134306372 @default.
- W4387165792 hasConcept C146978453 @default.
- W4387165792 hasConcept C153258448 @default.
- W4387165792 hasConcept C154945302 @default.
- W4387165792 hasConcept C157553263 @default.
- W4387165792 hasConcept C165700671 @default.
- W4387165792 hasConcept C177264268 @default.
- W4387165792 hasConcept C199360897 @default.
- W4387165792 hasConcept C206688291 @default.
- W4387165792 hasConcept C2776637919 @default.
- W4387165792 hasConcept C3018234147 @default.
- W4387165792 hasConcept C33923547 @default.
- W4387165792 hasConcept C41008148 @default.
- W4387165792 hasConcept C50644808 @default.
- W4387165792 hasConcept C58973888 @default.
- W4387165792 hasConcept C80444323 @default.
- W4387165792 hasConceptScore W4387165792C11413529 @default.
- W4387165792 hasConceptScore W4387165792C115178988 @default.
- W4387165792 hasConceptScore W4387165792C127413603 @default.
- W4387165792 hasConceptScore W4387165792C132525143 @default.
- W4387165792 hasConceptScore W4387165792C134306372 @default.
- W4387165792 hasConceptScore W4387165792C146978453 @default.
- W4387165792 hasConceptScore W4387165792C153258448 @default.
- W4387165792 hasConceptScore W4387165792C154945302 @default.
- W4387165792 hasConceptScore W4387165792C157553263 @default.
- W4387165792 hasConceptScore W4387165792C165700671 @default.
- W4387165792 hasConceptScore W4387165792C177264268 @default.
- W4387165792 hasConceptScore W4387165792C199360897 @default.
- W4387165792 hasConceptScore W4387165792C206688291 @default.
- W4387165792 hasConceptScore W4387165792C2776637919 @default.