Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387166893> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387166893 abstract "Cross-ties represent a key infrastructure asset of the railroad industry. Recent research has shown that the cross-tie life is not only affected by the traditionally defined load and track design parameters but also by support condition, and in particular, support condition as represented by the condition of adjacent cross-ties. This paper builds upon the recent research and is focused on predicting a cross-tie’s future condition as a function of the changing condition of the surrounding cross-ties. As accurate cross-tie condition information becomes available from automated inspection systems, this data allows for the development of a theoretical framework for predicting cross-tie degradation and corresponding cross-tie life. This theoretical framework allows for the modeling of the interactions between adjacent cross-ties as a complex and dynamic system. Thus, the objective of this paper is to develop a model that uses theory guided machine learning framework as supported by well-defined railroad engineering relationships, such as the Beam on Elastic Foundation theory, to forecast the cross-tie condition as a function of its adjacent cross-ties and their corresponding degradation rates. The resulting model outperformed a more conventional traditional neural network model. The theory guided machine learning model showed very good correlation with actual data exhibiting an R 2 of 88.6% and an a 20 -index of 91% suggesting that the incorporation of domain knowledge into the machine learning model leads to demonstrably better cross-tie life prediction results." @default.
- W4387166893 created "2023-09-30" @default.
- W4387166893 creator A5029342764 @default.
- W4387166893 creator A5058498578 @default.
- W4387166893 creator A5078264104 @default.
- W4387166893 date "2023-09-29" @default.
- W4387166893 modified "2023-09-30" @default.
- W4387166893 title "Forecasting cross-tie condition based on the dynamic adjacent support using a theory-guided neural network model" @default.
- W4387166893 cites W1979413719 @default.
- W4387166893 cites W1995086603 @default.
- W4387166893 cites W2032201329 @default.
- W4387166893 cites W2062848325 @default.
- W4387166893 cites W2063045209 @default.
- W4387166893 cites W2075688178 @default.
- W4387166893 cites W2097966121 @default.
- W4387166893 cites W2121317260 @default.
- W4387166893 cites W2469732900 @default.
- W4387166893 cites W2734256217 @default.
- W4387166893 cites W2901312569 @default.
- W4387166893 cites W2944482879 @default.
- W4387166893 cites W2951331818 @default.
- W4387166893 cites W2972445383 @default.
- W4387166893 cites W2975904204 @default.
- W4387166893 cites W2985458670 @default.
- W4387166893 cites W3016327205 @default.
- W4387166893 cites W3017305623 @default.
- W4387166893 cites W3020265068 @default.
- W4387166893 cites W3047001618 @default.
- W4387166893 cites W3081558632 @default.
- W4387166893 cites W3088021817 @default.
- W4387166893 cites W3090897929 @default.
- W4387166893 cites W3128866086 @default.
- W4387166893 cites W3157239672 @default.
- W4387166893 cites W3165667291 @default.
- W4387166893 cites W3171099876 @default.
- W4387166893 cites W3182706339 @default.
- W4387166893 cites W3216622515 @default.
- W4387166893 cites W4225141734 @default.
- W4387166893 cites W4238324664 @default.
- W4387166893 doi "https://doi.org/10.1177/09544097231203275" @default.
- W4387166893 hasPublicationYear "2023" @default.
- W4387166893 type Work @default.
- W4387166893 citedByCount "0" @default.
- W4387166893 crossrefType "journal-article" @default.
- W4387166893 hasAuthorship W4387166893A5029342764 @default.
- W4387166893 hasAuthorship W4387166893A5058498578 @default.
- W4387166893 hasAuthorship W4387166893A5078264104 @default.
- W4387166893 hasConcept C119857082 @default.
- W4387166893 hasConcept C124101348 @default.
- W4387166893 hasConcept C127413603 @default.
- W4387166893 hasConcept C13736549 @default.
- W4387166893 hasConcept C14036430 @default.
- W4387166893 hasConcept C154945302 @default.
- W4387166893 hasConcept C27181475 @default.
- W4387166893 hasConcept C38652104 @default.
- W4387166893 hasConcept C41008148 @default.
- W4387166893 hasConcept C50644808 @default.
- W4387166893 hasConcept C76178495 @default.
- W4387166893 hasConcept C78458016 @default.
- W4387166893 hasConcept C86803240 @default.
- W4387166893 hasConceptScore W4387166893C119857082 @default.
- W4387166893 hasConceptScore W4387166893C124101348 @default.
- W4387166893 hasConceptScore W4387166893C127413603 @default.
- W4387166893 hasConceptScore W4387166893C13736549 @default.
- W4387166893 hasConceptScore W4387166893C14036430 @default.
- W4387166893 hasConceptScore W4387166893C154945302 @default.
- W4387166893 hasConceptScore W4387166893C27181475 @default.
- W4387166893 hasConceptScore W4387166893C38652104 @default.
- W4387166893 hasConceptScore W4387166893C41008148 @default.
- W4387166893 hasConceptScore W4387166893C50644808 @default.
- W4387166893 hasConceptScore W4387166893C76178495 @default.
- W4387166893 hasConceptScore W4387166893C78458016 @default.
- W4387166893 hasConceptScore W4387166893C86803240 @default.
- W4387166893 hasLocation W43871668931 @default.
- W4387166893 hasOpenAccess W4387166893 @default.
- W4387166893 hasPrimaryLocation W43871668931 @default.
- W4387166893 hasRelatedWork W2961085424 @default.
- W4387166893 hasRelatedWork W3016925281 @default.
- W4387166893 hasRelatedWork W3046775127 @default.
- W4387166893 hasRelatedWork W4281986673 @default.
- W4387166893 hasRelatedWork W4285260836 @default.
- W4387166893 hasRelatedWork W4286629047 @default.
- W4387166893 hasRelatedWork W4293525103 @default.
- W4387166893 hasRelatedWork W4306321456 @default.
- W4387166893 hasRelatedWork W4306674287 @default.
- W4387166893 hasRelatedWork W4224009465 @default.
- W4387166893 isParatext "false" @default.
- W4387166893 isRetracted "false" @default.
- W4387166893 workType "article" @default.