Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387168854> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4387168854 endingPage "4091" @default.
- W4387168854 startingPage "4091" @default.
- W4387168854 abstract "Recently, artificial intelligence (AI) has gained an abundance of attention in cybersecurity for Industry 4.0 and has shown immense benefits in a large number of applications. AI technologies have paved the way for multiscale security and privacy in cybersecurity, namely AI-based malicious intruder protection, AI-based intrusion detection, prediction, and classification, and so on. Moreover, AI-based techniques have a remarkable potential to address the challenges of cybersecurity that Industry 4.0 faces, which is otherwise called the IIoT. This manuscript concentrates on the design of the Golden Jackal Optimization with Deep Learning-based Cyberattack Detection and Classification (GJODL-CADC) method in the IIoT platform. The major objective of the GJODL-CADC system lies in the detection and classification of cyberattacks on the IoT platform. To obtain this, the GJODL-CADC algorithm presents a new GJO-based feature selection approach to improve classification accuracy. Next, the GJODL-CADC method makes use of a hybrid autoencoder-based deep belief network (AE-DBN) approach for cyberattack detection. The effectiveness of the AE-DBN approach can be improved through the design of the pelican optimization algorithm (POA), which in turn improves the detection rate. An extensive set of simulations were accomplished to demonstrate the superior outcomes of the GJODL-CADC technique. An extensive analysis highlighted the promising performance of the GJODL-CADC technique compared to existing techniques." @default.
- W4387168854 created "2023-09-30" @default.
- W4387168854 creator A5003500465 @default.
- W4387168854 creator A5005376019 @default.
- W4387168854 creator A5045078221 @default.
- W4387168854 creator A5048164613 @default.
- W4387168854 creator A5067806022 @default.
- W4387168854 creator A5081643142 @default.
- W4387168854 date "2023-09-29" @default.
- W4387168854 modified "2023-10-11" @default.
- W4387168854 title "Golden Jackal Optimization with a Deep Learning-Based Cybersecurity Solution in Industrial Internet of Things Systems" @default.
- W4387168854 cites W2136922672 @default.
- W4387168854 cites W2296509296 @default.
- W4387168854 cites W3022218140 @default.
- W4387168854 cites W3086419524 @default.
- W4387168854 cites W3106741970 @default.
- W4387168854 cites W3109798323 @default.
- W4387168854 cites W3126935680 @default.
- W4387168854 cites W3154213948 @default.
- W4387168854 cites W3180273110 @default.
- W4387168854 cites W3196498354 @default.
- W4387168854 cites W3217567704 @default.
- W4387168854 cites W4206918024 @default.
- W4387168854 cites W4224258320 @default.
- W4387168854 cites W4225248549 @default.
- W4387168854 cites W4226085896 @default.
- W4387168854 cites W4285187956 @default.
- W4387168854 cites W4297329009 @default.
- W4387168854 cites W4313415198 @default.
- W4387168854 cites W4317038427 @default.
- W4387168854 cites W4318570876 @default.
- W4387168854 cites W4362486885 @default.
- W4387168854 cites W4372049009 @default.
- W4387168854 cites W4382631089 @default.
- W4387168854 cites W4385347085 @default.
- W4387168854 doi "https://doi.org/10.3390/electronics12194091" @default.
- W4387168854 hasPublicationYear "2023" @default.
- W4387168854 type Work @default.
- W4387168854 citedByCount "0" @default.
- W4387168854 crossrefType "journal-article" @default.
- W4387168854 hasAuthorship W4387168854A5003500465 @default.
- W4387168854 hasAuthorship W4387168854A5005376019 @default.
- W4387168854 hasAuthorship W4387168854A5045078221 @default.
- W4387168854 hasAuthorship W4387168854A5048164613 @default.
- W4387168854 hasAuthorship W4387168854A5067806022 @default.
- W4387168854 hasAuthorship W4387168854A5081643142 @default.
- W4387168854 hasBestOaLocation W43871688541 @default.
- W4387168854 hasConcept C101738243 @default.
- W4387168854 hasConcept C108583219 @default.
- W4387168854 hasConcept C119857082 @default.
- W4387168854 hasConcept C148483581 @default.
- W4387168854 hasConcept C154945302 @default.
- W4387168854 hasConcept C35525427 @default.
- W4387168854 hasConcept C38652104 @default.
- W4387168854 hasConcept C41008148 @default.
- W4387168854 hasConcept C50644808 @default.
- W4387168854 hasConcept C97385483 @default.
- W4387168854 hasConceptScore W4387168854C101738243 @default.
- W4387168854 hasConceptScore W4387168854C108583219 @default.
- W4387168854 hasConceptScore W4387168854C119857082 @default.
- W4387168854 hasConceptScore W4387168854C148483581 @default.
- W4387168854 hasConceptScore W4387168854C154945302 @default.
- W4387168854 hasConceptScore W4387168854C35525427 @default.
- W4387168854 hasConceptScore W4387168854C38652104 @default.
- W4387168854 hasConceptScore W4387168854C41008148 @default.
- W4387168854 hasConceptScore W4387168854C50644808 @default.
- W4387168854 hasConceptScore W4387168854C97385483 @default.
- W4387168854 hasFunder F4320322322 @default.
- W4387168854 hasIssue "19" @default.
- W4387168854 hasLocation W43871688541 @default.
- W4387168854 hasOpenAccess W4387168854 @default.
- W4387168854 hasPrimaryLocation W43871688541 @default.
- W4387168854 hasRelatedWork W1530536511 @default.
- W4387168854 hasRelatedWork W1974618110 @default.
- W4387168854 hasRelatedWork W2165991108 @default.
- W4387168854 hasRelatedWork W2585432886 @default.
- W4387168854 hasRelatedWork W2669956259 @default.
- W4387168854 hasRelatedWork W3082895349 @default.
- W4387168854 hasRelatedWork W4249005693 @default.
- W4387168854 hasRelatedWork W4293718213 @default.
- W4387168854 hasRelatedWork W4365790226 @default.
- W4387168854 hasRelatedWork W4367312605 @default.
- W4387168854 hasVolume "12" @default.
- W4387168854 isParatext "false" @default.
- W4387168854 isRetracted "false" @default.
- W4387168854 workType "article" @default.