Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387172010> ?p ?o ?g. }
- W4387172010 endingPage "e1554" @default.
- W4387172010 startingPage "e1554" @default.
- W4387172010 abstract "Sleep apnea is defined as a breathing disorder that affects sleep. Early detection of sleep apnea helps doctors to take intervention for patients to prevent sleep apnea. Manually making this determination is a time-consuming and subjectivity problem. Therefore, many different methods based on polysomnography (PSG) have been proposed and applied to detect this disorder. In this study, a unique two-layer method is proposed, in which there are four different deep learning models in the deep neural network (DNN), gated recurrent unit (GRU), recurrent neural network (RNN), RNN-based-long term short term memory (LSTM) architecture in the first layer, and a machine learning-based meta-learner (decision-layer) in the second layer. The strategy of making a preliminary decision in the first layer and verifying/correcting the results in the second layer is adopted. In the training of this architecture, a vector consisting of 23 features consisting of snore, oxygen saturation, arousal and sleep score data is used together with PSG data. A dataset consisting of 50 patients, both children and adults, is prepared. A number of pre-processing and under-sampling applications have been made to eliminate the problem of unbalanced classes. Proposed method has an accuracy of 95.74% and 99.4% in accuracy of apnea detection (apnea, hypopnea and normal) and apnea types detection (central, mixed and obstructive), respectively. Experimental results demonstrate that patient-independent consistent results can be produced with high accuracy. This robust model can be considered as a system that will help in the decisions of sleep clinics where it is expected to detect sleep disorders in detail with high performance." @default.
- W4387172010 created "2023-09-30" @default.
- W4387172010 creator A5088338812 @default.
- W4387172010 date "2023-09-29" @default.
- W4387172010 modified "2023-10-11" @default.
- W4387172010 title "Sleep disorder and apnea events detection framework with high performance using two-tier learning model design" @default.
- W4387172010 cites W1714259827 @default.
- W4387172010 cites W2032794594 @default.
- W4387172010 cites W2045259847 @default.
- W4387172010 cites W2064675550 @default.
- W4387172010 cites W2100213584 @default.
- W4387172010 cites W2229675383 @default.
- W4387172010 cites W2343482910 @default.
- W4387172010 cites W2517389691 @default.
- W4387172010 cites W2571304339 @default.
- W4387172010 cites W2592857683 @default.
- W4387172010 cites W2604096629 @default.
- W4387172010 cites W2768054782 @default.
- W4387172010 cites W2791025763 @default.
- W4387172010 cites W2791697938 @default.
- W4387172010 cites W2795937596 @default.
- W4387172010 cites W2796062758 @default.
- W4387172010 cites W2797898470 @default.
- W4387172010 cites W2805115566 @default.
- W4387172010 cites W2807403849 @default.
- W4387172010 cites W2885195348 @default.
- W4387172010 cites W2900097455 @default.
- W4387172010 cites W2912654414 @default.
- W4387172010 cites W2914197217 @default.
- W4387172010 cites W2925762195 @default.
- W4387172010 cites W2936749034 @default.
- W4387172010 cites W2949394964 @default.
- W4387172010 cites W2953193031 @default.
- W4387172010 cites W2959442417 @default.
- W4387172010 cites W2964199361 @default.
- W4387172010 cites W2964546138 @default.
- W4387172010 cites W2966674791 @default.
- W4387172010 cites W2974597585 @default.
- W4387172010 cites W2982636158 @default.
- W4387172010 cites W2999086204 @default.
- W4387172010 cites W3013273332 @default.
- W4387172010 cites W3022034492 @default.
- W4387172010 cites W3043833357 @default.
- W4387172010 cites W3090333983 @default.
- W4387172010 cites W3092847057 @default.
- W4387172010 cites W3093925743 @default.
- W4387172010 cites W3095757518 @default.
- W4387172010 cites W3105238135 @default.
- W4387172010 cites W3120315121 @default.
- W4387172010 cites W3132149503 @default.
- W4387172010 cites W3134182943 @default.
- W4387172010 cites W3134500534 @default.
- W4387172010 cites W3135259744 @default.
- W4387172010 cites W3137633995 @default.
- W4387172010 cites W3158623151 @default.
- W4387172010 cites W3172750168 @default.
- W4387172010 cites W3174072953 @default.
- W4387172010 cites W3180635987 @default.
- W4387172010 cites W3184432463 @default.
- W4387172010 cites W3186028383 @default.
- W4387172010 cites W3186034298 @default.
- W4387172010 cites W3199652665 @default.
- W4387172010 cites W3210142277 @default.
- W4387172010 cites W4200386936 @default.
- W4387172010 cites W4200619913 @default.
- W4387172010 cites W4206634327 @default.
- W4387172010 cites W4210582231 @default.
- W4387172010 cites W4226019551 @default.
- W4387172010 cites W4229084042 @default.
- W4387172010 cites W4280494973 @default.
- W4387172010 cites W4281255589 @default.
- W4387172010 cites W4284671529 @default.
- W4387172010 cites W4309865830 @default.
- W4387172010 doi "https://doi.org/10.7717/peerj-cs.1554" @default.
- W4387172010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37810361" @default.
- W4387172010 hasPublicationYear "2023" @default.
- W4387172010 type Work @default.
- W4387172010 citedByCount "0" @default.
- W4387172010 crossrefType "journal-article" @default.
- W4387172010 hasAuthorship W4387172010A5088338812 @default.
- W4387172010 hasBestOaLocation W43871720101 @default.
- W4387172010 hasConcept C108583219 @default.
- W4387172010 hasConcept C118552586 @default.
- W4387172010 hasConcept C119857082 @default.
- W4387172010 hasConcept C126322002 @default.
- W4387172010 hasConcept C147168706 @default.
- W4387172010 hasConcept C153180895 @default.
- W4387172010 hasConcept C154945302 @default.
- W4387172010 hasConcept C200678441 @default.
- W4387172010 hasConcept C2776006263 @default.
- W4387172010 hasConcept C2777711342 @default.
- W4387172010 hasConcept C2777935920 @default.
- W4387172010 hasConcept C2778205975 @default.
- W4387172010 hasConcept C2781326671 @default.
- W4387172010 hasConcept C41008148 @default.
- W4387172010 hasConcept C50644808 @default.
- W4387172010 hasConcept C71924100 @default.
- W4387172010 hasConceptScore W4387172010C108583219 @default.