Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387172106> ?p ?o ?g. }
- W4387172106 endingPage "117702" @default.
- W4387172106 startingPage "117702" @default.
- W4387172106 abstract "A significant driver of global warming is fast growth in greenhouse gas (GHG) generated by energy-producing areas. Converting biomass into useful products, chemical looping gasification is an appropriate route. Using integrated steam gasification technology that utilizes a chemical looping method to produce hydrogen. Mn-, Ni-, and Ca-based materials are the three types of oxygen carriers (OC), and they are utilized. This process offers the syngas, in the greatest quality and quantity, which is a key factor. We consider that the optimum gasifier temperature is 1100 °C. The steam-to-biomass ratio is 0.95, if the steam is further increased then the char gasification reaction starts moving in the reverse direction. In this process, 736.629 MW of power is produced when only natural gas and air are used in the combustion chamber and if we add hydrogen, power is increased up to 16 MW. To predict syngas composition and the S/B ratio, machine learning modeling using Artificial Neural Networks (ANN) algorithms are applied and compared, Bayesian Regularization and Scaled Conjugate gradient proves to be the best ANN model for validating and comparing with process model, demonstrating its accuracy and potential for optimizing biomass gasification processes as high as up-to 0.99 R2 value." @default.
- W4387172106 created "2023-09-30" @default.
- W4387172106 creator A5018230748 @default.
- W4387172106 creator A5024390182 @default.
- W4387172106 creator A5035352444 @default.
- W4387172106 creator A5053873814 @default.
- W4387172106 date "2023-11-01" @default.
- W4387172106 modified "2023-09-30" @default.
- W4387172106 title "Integrated process for simulation of gasification and chemical looping hydrogen production using Artificial Neural Network and machine learning validation" @default.
- W4387172106 cites W1608018046 @default.
- W4387172106 cites W1627978401 @default.
- W4387172106 cites W1963614637 @default.
- W4387172106 cites W1975962893 @default.
- W4387172106 cites W1980854042 @default.
- W4387172106 cites W1986002269 @default.
- W4387172106 cites W1990764461 @default.
- W4387172106 cites W1992094443 @default.
- W4387172106 cites W2020984062 @default.
- W4387172106 cites W2022277295 @default.
- W4387172106 cites W2052060381 @default.
- W4387172106 cites W2053864984 @default.
- W4387172106 cites W2066344855 @default.
- W4387172106 cites W2157410185 @default.
- W4387172106 cites W2191727035 @default.
- W4387172106 cites W2287346277 @default.
- W4387172106 cites W2319222399 @default.
- W4387172106 cites W2319838421 @default.
- W4387172106 cites W2345041989 @default.
- W4387172106 cites W2369452237 @default.
- W4387172106 cites W2473168905 @default.
- W4387172106 cites W2495017214 @default.
- W4387172106 cites W2535805601 @default.
- W4387172106 cites W2568765937 @default.
- W4387172106 cites W2577121434 @default.
- W4387172106 cites W2612765229 @default.
- W4387172106 cites W2615333633 @default.
- W4387172106 cites W2729879202 @default.
- W4387172106 cites W2748436389 @default.
- W4387172106 cites W2753855463 @default.
- W4387172106 cites W2793982271 @default.
- W4387172106 cites W2897101623 @default.
- W4387172106 cites W2923308291 @default.
- W4387172106 cites W2942438906 @default.
- W4387172106 cites W2971913339 @default.
- W4387172106 cites W2985391319 @default.
- W4387172106 cites W2991351573 @default.
- W4387172106 cites W3011724115 @default.
- W4387172106 cites W3034492860 @default.
- W4387172106 cites W3037753860 @default.
- W4387172106 cites W3047737549 @default.
- W4387172106 cites W3048217928 @default.
- W4387172106 cites W3048745063 @default.
- W4387172106 cites W3100397990 @default.
- W4387172106 cites W3131273504 @default.
- W4387172106 cites W3157762590 @default.
- W4387172106 cites W3187366296 @default.
- W4387172106 cites W4205864640 @default.
- W4387172106 cites W4291109638 @default.
- W4387172106 cites W4312116325 @default.
- W4387172106 cites W4313487601 @default.
- W4387172106 cites W4362638540 @default.
- W4387172106 cites W4385636418 @default.
- W4387172106 cites W4385708909 @default.
- W4387172106 cites W4385949594 @default.
- W4387172106 doi "https://doi.org/10.1016/j.enconman.2023.117702" @default.
- W4387172106 hasPublicationYear "2023" @default.
- W4387172106 type Work @default.
- W4387172106 citedByCount "0" @default.
- W4387172106 crossrefType "journal-article" @default.
- W4387172106 hasAuthorship W4387172106A5018230748 @default.
- W4387172106 hasAuthorship W4387172106A5024390182 @default.
- W4387172106 hasAuthorship W4387172106A5035352444 @default.
- W4387172106 hasAuthorship W4387172106A5053873814 @default.
- W4387172106 hasConcept C105923489 @default.
- W4387172106 hasConcept C111368507 @default.
- W4387172106 hasConcept C111919701 @default.
- W4387172106 hasConcept C115540264 @default.
- W4387172106 hasConcept C119857082 @default.
- W4387172106 hasConcept C127313418 @default.
- W4387172106 hasConcept C127413603 @default.
- W4387172106 hasConcept C15229330 @default.
- W4387172106 hasConcept C156383657 @default.
- W4387172106 hasConcept C178790620 @default.
- W4387172106 hasConcept C185592680 @default.
- W4387172106 hasConcept C189575605 @default.
- W4387172106 hasConcept C194439259 @default.
- W4387172106 hasConcept C202189072 @default.
- W4387172106 hasConcept C21880701 @default.
- W4387172106 hasConcept C39432304 @default.
- W4387172106 hasConcept C41008148 @default.
- W4387172106 hasConcept C50644808 @default.
- W4387172106 hasConcept C512968161 @default.
- W4387172106 hasConcept C518851703 @default.
- W4387172106 hasConcept C548081761 @default.
- W4387172106 hasConcept C98045186 @default.
- W4387172106 hasConceptScore W4387172106C105923489 @default.
- W4387172106 hasConceptScore W4387172106C111368507 @default.
- W4387172106 hasConceptScore W4387172106C111919701 @default.